Pablo's SOLIBoftware
Development

The Los Techies crew is proud to compile a number of blog
posts focused on a particular subject in addition to their
regular blogging. Pablo's Topic of the Month for the month of
March 2008 was on Bob Martin's S.0.L.1.D. design principles.
We tried to cover all of them by the end of the month and
duplicated some over time.

Software Development is not a Jenga game

-tl-étzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



TaHe of Contents

PABLO'S SOLID SOF READEVELOPMENT........coiiiiiiiiiiiiii ettt es e sste e e snsae e s s s e s nnneee s 1
MVHAT IS S.0 . L L D, 2 ettt ekttt s b e e h b e s bt S h e e eb e e bt e ab e ea b e e R b e eb e ekt e ke e nbe e aeeeaeesbeesbeenbeenee 4
SRP: Single Responsibility PriNCIPIE..........uiiie e e a e 4
OCP: Open ClOSEd PrNCIPIE......eeiiiiiiiee ettt e e e e e s abb e e e e s snbreeeessanes 4
LSP: Liskov SUBSHItUtion PriNCIPLE........eiriii e e s r e e e e e e e e e e e e nnnrnraees 4

ISP: Interface Segregation PrNCIRLE...........oouiiii e e s rereee e e 4
DIP: Dependency INVErSiON PriNCIPIE. ... e e e e e e e e e e e e e e s nneees 4
SRP: IBIGLE RESPONSIBIERINCIPLE. ......cci ittt ittt ctiete et ettt e e sitae e e stanre e e s stbaeessstaeaesntaeeessamreeessssaeeesns 5
SINGLE RESPONSIBILITY PRINCIPLE BY SEAN CHAMBERS ......ttvttteesteesteesteeresssesseesseesseesmesssesseessessmeesneeseannessnesseesneennessnesnnesnnes 6
SINGLE RESPONSIBILITY PRINCIPLE BY JASON MERIDTH .......cviiveietestesiesestesiesestestesestessesassessesassessesassessesessessessssessesessessessssensons 8
REAL SWISS DON'T NEED SRP, DO THEY? BY GABRIEL SCHENKER .......veeuveeureauresseesteesreete e sinesiessreesneennesnnesnresseesneesneenresnnesnnas 12

[ aLi oo [ o i o] o RO UURP PP PUPUPRPUPRRPINt 12
Swiss people thinK differently ... e e e e e e e e e e e ae e 13
Why does the rest of the world consider SRP to be important2.............coooiiii e, 14
Rl = e (0T 1T Y (=T 01 o)A (= o 16
Step 1: DefiniNg @ MOAEL.........eeiiiie e 257

Step2: Extracting the loading(parsing) int0 @ rePOSIIAIY..........uuvvruiiiiiiiieie e e 18

Step3: Introducing a presenter and extracting 0giC.........ccccvvviiiiiiiiiee e 25

Stepd: Implementing the REPOSITOLY........coiiiiiiii e e e e e e e e e e e e e e e e e e e e ae e 24

THE SAMPIE COUR......eeiiiitiiie ettt e st e e e e s bbbt e e s et bt e e s aabbe e e e e e s annneeee s 25

ST 010 0= Y2 PO UPPPRT 25
OCP: OPEN CLOSEDNEIRPLE.........ciii ittt s e e e e ettt me e e e e e e et s s e e e e e e e e easamrseeeeaeeanetannnaeaeaens 27
OPEN CLOSED PRINCIPLE BY JOE OCAMPO ...ttt itee it ettt sttt ettt st b e sb et b e es s e ebe e s b e e b e et e e s be e e e sseesneeaneenneenne 28

A CASE StUAY IN OCP IGNOIAINCE .....cciittiiiie ittt eee ettt ettt et e e e e s b bt e e s s bb et e e s abbeeee e e s aabbeeeesannreeeas 28

AT =T £ Y7o T TR/ (o g o PSSP 30
Yo 011 0] s LSOO PPPPRPOUPPPPRPPORt 31

OCP REVISITED IN RUBY BY JOE OCAMPO ...ttt iteeste ettt sttt ettt sse b bt e sbe et mb e s b e ebs e st e e st e et e e sbe e e e sseesneenneenneenns 36
But walit there iS MOTEL........ooooiiiieercee e eeeaneeeeeeeesssessesssssssnnsnnnns s 40

THE OPEN CLOSED PRINCIPLE BY GABRIEL SCHENKER ....c.vteuttestiastesseesteesieesteesteesseassesssesteesseeseessesssesseesbeesbeesseennessneannensnenseens 42

[ aLi oo [0 ox i o] o O U RO URP PR PUPUPOPPPRPPPPPNt 42
SEAIBH ClASSES ... eeeeiiieiie ettt ettt e e e e oottt e e et e e e e e e e e e e e a b e bt e et e e e e e e e e e e e e an b e e aeees 43

ST T 0] 0] [ S PSPPSR 46
(0] o o] 013 1] o OO 50
LSP: LISKOV SUBSTITON PRIIIPLE .....ootiiiiiii ettt e e e e e et et tes s e e e e e e s e e ataaa s e s e e e s eesamaansaeeaaneenes 51
LISKOV SUBSTITUTION PRINCIPLE BY CHAD IMIYERS.....c..ceuttiitistie st sttt ettt ettt ettt st et ettt ne et e nbeenbeenbeenneaneas 52

A €aSe StUAY IN LSP IgNOTANCE ... ..eeiiiiiiiiii ettt ettt e s s e e e et ae e e e e neees 52
WHEIE'A WE O WIONG?. ... eeeiii ittt et e e oottt et e e e e e e e e e e oo bbbt et et et e e e e e e e sa e e nnbbbbeeeaeeaeeaaesannnnnnnnes 51
Yo 011 0] LN ST PPPRPTRPPPPUPPORt 51

(s}
&\
(s}

f2LIYSyd

-t Fof2Qa {h[L5 {2 FoilehieNdm 5



ISP: INTERFACE SEGRHON PRINCIPLE. ...ttt mre e me e 53

INTERFACE SEGREGATION PRINCIPLE BY RAY HOUSTON ....uuviiiiiieitieesiite st e siteesiteessteessve e sntaesaseesntaesnseesntaesnsessnteesnsessnsnesnsenan 54
DIP: DEPENDENCY IRBEDN PRINCIPLE. ... ...ttt a e s emee e e e 60
DEPENDENCY INVERSION PRINCIPLE BY JIMMY BOGARD......c.vviiiieitiieiiie st seeesite e stee et e s stae et e stae et e e siaeestseestaeessseessneennnes 61
Spider wWebs and Bad AESIGN........uiiii i e e e e e e e e e e e aaaas 61

TOO Many reSPONSIDIITIES ......ceiiiiiii e e e enees 63
0Nz U0 K= W o =Y 4 L= g0 (=T T o U PPPRRRY 63
Factoring out the depPeNnENCIES..........cooiiiiiii e e e 63
Filling out the IMPIEMENTALIONS.......cciiee it e e e e e e e e e s e s rr e e e e e e s e eesessnnrnnrnneeaeeesd 64
ISOlating tNEUGIY STUTT.......eiiiii et e e et e e e st e e e s abbreeeeenaaes 66

THE DEPENDENCY INVERSION PRINCIPLE BY GABRIEL SCHENKER .......uteutestestestesiesteeseessesesresbe st sbe s e essesnesne st sne s e e enne e sne e 70
WHAL S BAO DESIGN2...ceiiiiiiiite ettt ettt ettt e e ettt e e s st e e e e e aab b bt e e e sasbbe e e e e annbb e e e e e nbbeeeeeesnnres 70

F N a0 ] o] o 1= (== T 70

The Dependency INVErsion PHNCIDIE.........c.uviii et e s e L 2

LAY gV o= 1 e U=T o =T o o (=T o Ty V| V2= £ o 71
SUIMIMIAIY ...ttt ettt e e e e e e s e e e e et e e e e e e e sass s br s nrn s re e et eeaeeessssannnnnrnnnneeeeeneeessesnnnsnnnnnnneil D
SINGLE-RESPONSIBILITY VERSUS NEEDLESS COMPLEXITY BY RAY HOUSTON .....vivietieiieiesie sttt eenie ettt see e s 74
DIP: CREATING AND WORKING WITH A CLOUD OF OBJECTS BY DERICK BAILEY w.veiuvviiiieiiiieesieeesiie e siee st sive st s 76
CONCLUSIONS AND BEINTE OF S.O.L.1D.. . ittt eme st n e e e st e e e e e s srme e 803
LOW COUPLING ..ttt sttt sitee sttt et site e st e sttt sste e s st e et e e st e e st e skt e a8t ookt e 4 sk o5 ket e a ket e s ke e e ab e e Ak e et e e e ke eenbe e e beeenbe e et 803
HIGH COHESION .....tieutiette ettt st sttt ettt ettt ettt et e s e e b e s bt e s b e sb e et e e ab e e s e e eb e e eE e e bt e b e e st e e s e e e b e e ebe e nbe e bt enbeanbeenbenbeenbeens 803
EINCAPSULATION ..ttt suteestttesuteessteessteessbeessteessbeessteeasbeeaabeeasbeeanbe e e st e eab e e e s bt e eabe e e s ke e e a ke e s ke e e mb e e n ke e e nbe e et e e e nbe e e beeenbee et s 803
COPYRIGHT AND CONTATFORMATION. ... eieiieeeee st eree e e e st e e e e e seeee e e eme e e e e st e e e e e s enseeeeeeeameeeann 814

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



Whatis S.O.L.1.D.?

S.0.L.I.D. is a collection of best-practice, object-oriented design principles which can be applied
to your design, allowing you to accomplish various desirable goals such as loose-coupling,
higher maintainability, intuitive location of interesting code, etc. S.O.L.1.D. is an acronym for
the following principles (which are, themselves acronyms -- confused yet?).

These principles were pioneered and first collected into a written work by Robert 'Uncle Bob'
Martin. You can find more details here:
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Each of the various letters in the S.0.L.I.D. acronym is yet another acronym

SRP: Single Responsibility Principle
THERE SHOULD NEVER BE MORE THAN ONE REASON FOR A CLASS TO CHANGE.

OCP: Open Closed Principle
SOFTWARE ENTITIES (CLASSES, MODULES, FUNCTIONS, ETC.) SHOULD BE OPEN FOR EXTE
BUT CLOSED FOR MODIFICATION

LSP: Liskov Substitution Principle
FUNCTIONS THAT USE ... REFERENQ@EE TDASSES MUST BE ABLE TO USE OBJECTS OF
DERIVED CLASSEISHOUT KNOWING IT.

ISP: Interface Segregation Principle
CLIENTS SHOULD NOT BE FORCED TO DEPEND UPON INTERFACESN®IAUSHEY DO

DIP: Dependency Inversion Principle
A. HIGH LEVEL MODULES SHOULD NOT DEPEND UPON LOW LEVEL MODULES. BOTH SHOUL
DEPEND UPON ABSTRACTIONS

B. ABSTRACTIONS SHOULD NOT DEPENCEURMDN.METAILS SHOULD DEPEND UPON
ABSTRACTIONS

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://www.objectmentor.com/resources/articles/ocp.pdf
http://www.objectmentor.com/resources/articles/lsp.pdf
http://www.objectmentor.com/resources/articles/isp.pdf
http://www.objectmentor.com/resources/articles/dip.pdf

SRP: Single Responsibility Principle

THERE SHOULD NEVER BE MORE THAN ONE REASON FOR A CLASS TO CHANC
http://www.objectmentor.com/resources/articles/srp.pdf

SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://www.objectmentor.com/resources/articles/srp.pdf

Single Responsibility Principley Sean Chambers

After Chad and Ray, | followed suit as well and am doing Pablo's Topic of the month post on the
Single Responsibility Principle or SRP for short.

In SRP a reason to change is defined as a responsibility, therefore SRP states, "An object should
have only one reason to change". If an object has more than one reason to change then it has
more than one responsibility and is in violation of SRP. An object should have one and only one
reason to change.

Let's look at an example. In the example below | have a BankAccount class that has a couple of
methods:

1: public abstract class BankAccount

2:{

3:  double Balance { get; }

void Deposit(double amount) {}

void Withdraw(double amount) {}

void AddInterest(double amount) {}

void Transfer(double amount, IBankAccount toAccount) {}

© N o g R

Let's say that we use this BankAccount class for a personQ @hecking and Savings account. That
would cause this class to have more than two reasons to change. This is because Checking
accounts do not have interest added to them and only Savings accounts have interest added to
them on a monthly basis or however the bank calculates it.

Some people may say that the class would even have 3 reasons to change because of the
Deposit/Withdraw methods as well but | think you can definitely get a little crazy with SRP. That
being said, | believe it just depends on the context.

So, let's refactor this to be more SRP friendly.

1: public abstract class BankAccount

2:{

3:  double Balance { get; }

4:  void Deposit(double amount);

5:  void Withdraw(double amount);

6: void Transfer(double amount, IBankAccount toAccount);
7:}

8:

9: public class CheckingAccount : BankAccount
10:{

11:}

-tl-()tZQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



12:

13: public class SavingsAccount : BankAccount
14:{

15:  public void AddInterest(double amount);
16:}

So what we have done is simply create an abstract class out of BankAccount and then created a
concrete CheckingAccount and SavingsAccount class so that we can isolate the methods that
are causing more than one reason to change.

When you actually think about it, every single class in the .Net Framework is violating SRP all of
the time. The GetHashCode() and ToString() methods are causing more than one reason to
change, although you could say that these methods are exempt because they exist in the
framework itself and out of our reach for change.

I'm sure you can come up with a lot more instances where you have violated SRP, and even
instances where it just depends on the context. As stated on Object Mentor: "The SRP is one of
the simplest of the principle, and one of the hardest to get right".

Here is a link to the SRP pdf on Object Mentor for more information.

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://www.objectmentor.com/resources/articles/srp.pdf

Single Responsibility Principley Jason Meridth

This post is about the first letter in Uncle Bob's SOLID acronym, Single Responsibility Principle, and a continuation
of The Los Techies Pablo's Topic of the Month - March: SOLID Principles. Sean has already posted on this, but I'd
like to "contribute™.

Note about the SOLID acronym and this blog "storm"

This "principle" is more or less common sense, as are most of the other items in the SOLID adifanyme.idea

of this series because | personally have interviewed with companies who would asp@dsible code scenarios

and | respond with one of these principles or one of the GOF patterns and they look back at me with a blahk stare.
know these are just labels, but if they can reduce the miscommunication possibilities and start standardizing ou
industry, I'm all for it.I know some of the new ideas and labels out there are still being hammered out (i.e., like the
BDD discussions as of late), but that is part of the process and what has to happen in such a young industry like
ours.

Single-Responsibility Principle (SRP):
A class should have only one reason to change.

A good anti-example is the Active Record pattern. This pattern is in contradiction of SRP. A domain entity handles
persistence of its information. (Note: There is nothing wrong with using Active Record; I've recently used it on a
quick demo site and it worked perfectly) Normally, you would have a controller method/action pass a "hydrated"
entity to a method of a repository instance.

Like my favorite quote says:
Talk is cheap, show me the code ~ Linus Torvalds
[ S {bekat some .NET code.

Anti-SRP (Active Record)

Imagine you have a User entity that has a username and password property. I'm using the Castle Active Record
libraries for this example.

1: using System;

2: using Castle.ActiveRecord,;

3:

4: namespace ActiveRecordSample

5:{

6: [ActiveRecord]

7:  public class User : ActiveRecordBase<User>

8 {
9: private intid;
10: private string username;

11: private string password;

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



http://www.objectmentor.com/resources/articles/srp.pdf
http://lostechies.com/blogs/chad_myers/archive/2008/03/07/pablo-s-topic-of-the-month-march-solid-principles.aspx
http://www.lostechies.com/blogs/sean_chambers/archive/2008/03/15/ptom-single-responsibility-principle.aspx
http://en.wikipedia.org/wiki/Active_record_pattern

12:
13: public User()

14: {

15: }

16:

17: public User(string username, string password)
18: {

19: this.username = username;

20: this.password = password;

21: }

22:

23: [PrimaryKey]
24: publicint Id

25: {

26: get{returnid;}
27: set{id =value; }
28: }

29:

30: [Property]
31: public string Username

32: {

33: get { return username; }
34: set { username = value; }
35: }

36:

37: [Property]

38: public string Password

39: {

40: get { return password; }
41: set { password = value; }
42: }

43: '}

44:}

As you can see, you use attributes to dictate how your properties map to columns in your database
table. Your entity name usually matches your table name, when using the ActiveRecord attribute with
no explicit table name (i.e., [ActiveRecord("UserTableName")].

To save the user you would take an instantiated user and call user.Save(); This would cause an
update to fire if the user instance had identity (aka an Id) and insert if it did not.

Translation to SRP

What | would normally do is have architecture like the following:

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



DOMAIN (CORE) PROJECT

( IRepository<T=> =) | ( IUserRepository #) | User &
Generic [nterface Interface Class
-3 k3 | =+ [Repository<Users 3
= Methods i = Properties
W Find | ) j"‘ Password
@ Findar ' ' ' Usemame
v Save _ = Methods
o ¥ User

DATA PROJECT

() IUserRepository

o

( UserRepository
Class

The UserRepository would be used by a web controller (I use monorail for my web projects),
being passed a User instance, and Save(user) would be called.

1: using System.Collections.Generic;

2: using Castle.MonoRail.Framework;

3: using SrpPost.Core;

4: using SrpPost.Data;

5:

6: namespace SrpPost.Web.Controllers

7:{

8: [Layout("default"), Rescue("generalerror™)]

9:  public class UserController : SmartDispatcherController

10:

11: private readonly IUserRepository userRepository;
12:

13: public UserController(IUserRepository userRepository)
14: {

15: this.userRepository = userRepository;

16: }

17:

18: public void Index()

19: {

20: RenderView("userlist");

21: }

22:

23: public void Save([DataBind("user”, Validate = true)] User user)

tlrof2Qa {h[ L5 { 2 FosTechieNldm 5SSt 2LIYSy i u



24: {

25: userRepository.Save(user);

26: Flash["LoginError"] = "User saved successfully.";
27: RenderView("userlist");

28: }

29: }

30:}

So, what it boils down to is that the user class now knows nothing on how it is persisted to the
database.

SRP is one of the hardest principles to enforce because there is always room for refactoring out
one class to multiple; each class has one responsibility. It is personal preference because class
explosion does cause some people to become code zealots. One of my other favorite quotes
lately is:

Always code as if the guy maintaining your code would be a violent psychopath and he knows
where you live.

Enjoy!

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



Real Swiss don't need SRP, do thdy?Gabriel Schenker

Introduction

You may ask yourself why | publish anotheicitabout thesingle responsibility principle
(SRP)We already had some very good post about this principle at Los Techiégre.gere
andhereto mention just a few. Well, the reason is that | consider this prinoipeof the most
helpful ones to achieve higher quality of code and better desigmen applied consistently.
And | want to approach this topic from a different standpahan is usually done by other
authors...

What does SRRAnean? The theoretical explanation (you might have read or heard many times
already) is

"There is one and only one reason to change a class."

What does this mean? This means that we should start to think small. Each complex problem
cannot easily be solved as a whole. It is much easier to first divide the problem in smaller sub-
problems. Each sub-problem has reduced complexity compared to the overall problem and can
then be tackled separately. There is a proverb whose origin is from the Romans which says:
"Divide et imperat"”, translated to English this means: "Divide and reign™. It was not possible for
the Roman emperor to reign the whole empire alone. No, he divided the empire into
independentregions and appointed a king or sovereign to each region. At the end, the Roman
emperor had not much more to do than orchestrate those kings or sovereigns that reported to
him.

Now what does this mean for me as a developer? Each developer has to solve problems. Very
often these problems are rather complex. Often the boundary conditions defining the problem
even change. Now we should start thinking in terms of "divide et imperat"Let's find the sub-
problems in the domain we are working in. Keep on dividing each sub-problem into sub-sub-
problems until you reach the point where such a "mini-problem™ has just one single task left.
Let's then solve each of those "mini-problem™ in its own class. Since each class only has one
single task to fulfill, there is (as a consequence) only one reason left to change this class. We
only have to change this class if the corresponding task changes.

Instead of tasks, one often talks of responsibility. Each class should have a single responsibility.
The responsibility is to just accomplish the assigned task.

| want to say it again: Applying the single responsibility principle leads to higher quality of code
and to better design! Why? Because the code is

-tl-()tZQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



http://www.lostechies.com/blogs/sean_chambers/archive/2008/03/15/ptom-single-responsibility-principle.aspx
http://www.lostechies.com/blogs/jason_meridth/archive/2008/03/29/ptom-single-responsibility-principle.aspx
http://www.lostechies.com/blogs/rhouston/archive/2008/10/05/single-responsibility-versus-needless-complexity.aspx

more readable, that is easier to understand
less error prone

more robust

better testable

better maintainable and extendable

=A =4 -4 4 4

Swiss people think differently...

But wait a moment. Swiss people are not descendants of the Romans...

A real Swiss does not need to follow the single responsibility principleThat's something for
others but not for us. As a representative sample | want to present you one of our most
successful products: the Swiss army knife

One can clearly see that this product has not just one single
responsibility. There are several responsibilities assembled in a single
unit. We have 2 knifes, one can opener, one bottle opener, an awl and
a corkscrew. This unit is very handy and fits well into the pocket of
every real Swiss man.

Some people prefer to even pack more functionality into this unit as
you can see in this second picture at right.

Well, this one is even better! But now |
.{have to admit, that not every pocket is big
enough for this tool. Thus only the
strongestSwiss men get one.

Another tool comes to my mind when remembering the time | passed in the Swiss
army. Our helmet is also considered to be a multipurpose tool. We primarily use it
to protect our heads from injuries but it has as well served me many times as a
pillow. It is even considered as an anti-hand-grenade tool. We were told that if a
hand grenade is thrown at us and we have no time or possibility to throw it away
then we should just put our helmet over it and burden it with our body. To be
honest, I've never tried it...

-tl-()tzQé {h[L5 {2toilehieNdm 5305t 2LI¥Syd p



Not to forget the famous Milka cow! Here a cow is used as
an advertising medium. This is a very important
responsibility by its own.

Well, I could possibly continue to give you good samples
of Swiss products that are really successful without '
respecting the SRP.

Why does therest of the world consider SRP to be
important?

Imagine one of the items of a Swiss army knife gets bent.
It would possibly render the whole item useless or at least harm its functionality. | will have to
throw away the whole knife. What a waste!

Or imagine that | am really happy with my Swiss army 3 W
knife but just one element does not totally fit my needs. | =
would like to replace just this element with another one, = |

which is better suited to my needs. | cannot do it! It's just ’ J'
not possible without (negatively) affecting all the other
elements of the knife. [

Imagine having a nice dinner with your wife or husbandin' .12 __3 ¢ !
a first class restaurant. You certainly have had lots of knives, forks and spoons, each element
serving for a single purpose. There are knives to cut steaks or pizzas or knives to eat fish and so
on. Each item is optimized for its specific task. If one of these items gets broken or if it doesn't
fulfill its duty any more then it can be replaced without affecting the other items.

-tl-()tzQé {h[L5 {2toilehieNdm 5305t 2LI¥Syd p



The same can be said for the glasses and dishes. It doesn't make
i sense to have only one single glass for all kinds of beverages, if

..~ {you like wine then you know what | mean. Red wine tastes

~ Isignificantly better in bigger glasses than white wine.

The same can be said about the dishes. It just doesn't make sense

to serve soup in the same dish as a nice T-bone steak with baked

potato is served.

Let's start coding!

Too many developers still don't respect the SRP. | consider this one of the primary reasons why
an application gets unmanageable over time. More and more, the code base resembles a plate
of Spaghetti. Consider the following sample.

public partial class Form1 : Form
{

public Form1()

{

InitializeComponent();

}

private void btnBrowse_Click(object sender, EventArgs e)
{
openFileDialogl.Filter = "XML Document (*.xml)|*.xml]All Files (*.*) ]| *.*";
var result = openFileDialogl.ShowDialog();
if (result == DialogResult.OK)
{
txtFileName.Text = openFileDialogl.FileName;
btnLoad.Enabled = true;
}
}

private void btnLoad_Click(object sender, EventArgs e)
{
listView1.Items.Clear();
var fileName = txtFileName.Text;
using (var fs = new FileStream(fileName, FileMode.Open))
{
var reader = XmIReader.Create(fs);
while (reader.Read())
{
if(reader.Name !="product") continue;
var id = reader.GetAttribute("id");
var name = reader.GetAttribute("name");
var unitPrice = reader.GetAttribute("unitPrice");
var discontinued = reader.GetAttribute("discontinued");
var item = new ListViewltem(
new string[J{id, name, unitPrice, discontinued});

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5SGSt 2 LISy 4



listViewl.ltems.Add(item);

}
}
}
}

A sample XML document could be

<?xml version="1.0" encoding="utf-8" ?>

<products>
<product id="1" name="IPod Nano" unitPrice="129.55" discontinued="false"/>
<product id="2" name="IPod Touch" unitPrice="259.10" discontinued="false"/>
<product id="3" name="IPod" unitPrice="78.95" discontinued="true"/>

</products>

Such and example of code can be found all the time in any type of company. Such code is not
only produced by part time developers but also by a lot of developers considering themselves
as being professional developers. | would consider this not to be an exception but rather the
norm.

The story behind this code is:

The user can select an XML document which contains a list of products from the file system. This
XML document is then loaded and display on screen.

| have kept the above code sample as short as possible. The structure of the XML is very simple,
the product has very few attributes and there is no error handling. In reality the above code
would be much longer and convoluted.

Now let's analyze which and how many responsibilities the above code has:

Refactoring step by step

Step 1: Defining a model

One of the first concepts one can find is an implicit model. Since we are importing product data
from an XML document it makes sense to introduce a Productentity as our model.

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



Annalyze Evaluate

UUnderstand

Eermemibher

By carefully analyzing the above code snippet and the given XML document we can define the
following model

public class Product

{
public int Id { get; set; }
public string Name { get; set; }
public decimal UnitPrice { get; set; }
public bool Discontinued { get; set; }

}

Step 2: Extracting the loading (and parsing) into a repository

We also can recognize a distinct concern of loading a list of products from a data source. In this
case the data source is a XML document

-tl-6t2Qé {(h[ L5 {2 FoiechieNdm 5SGSt 2 LIYSy i o



private void btnLoad_Click(object sender, EventArgs e)
{

listViewl.Items.Clear();
var fileName = i T -
i var fs = new FileStream(fileName, FileMode.Ope

var reader = XmlReader.Create(fs);
i reader.Read())

if(reader.Name != "product™) continue;

var id = reader.GetAttribute("id");

var name = reader.GetAttribute("name");

var unitPrice = reader.GetAttribute("unitPrice");

var discontinued = reader.GetAttribute("discontinued");

var item = new ListViewItem(new :[1{id, name, unitPrice, discontinued});
listViewl.Items.Add(item);

Wouldn't it make sense to have a specific component concerned with loading a list of products
from a data source and return a list of instances of type Product? Something like this:

public interface IProductRepository

{

IEnumerable<Product> GetByFileName(string fileName);

}

The repository is responsible to load, parse and map the XML document and return a list of
Product items to the caller.

First Refactoring

If we now refactor the sample with the assumption of having a product entity and a product
repository, the code might look like this:

private IProductRepository repository;

private void btnLoad_Click(object sender, EventArgs e)
{
listViewl.ltems.Clear();
var fileName = txtFileName.Text;
var products = repository.GetByFileName(fileName);
foreach (Product product in products)
{
var item = new ListViewltem(new[]
{
product.ld.ToString(),
product.Name,

-tl-()tzQé {h[L5 {2toilehieNdm 5305t 2LI¥Syd p



product.UnitPrice.ToString(),
product.Discontinued.ToString()

»;
listViewl.ltems.Add(item);

}
}

Step 3: Introducing a presenter and extracting logic not related to presentation from the view

Although our code already looks much more polished than before, we should still not be happy.
A view (and here the form is a view) should only contain logic that is strictly related to
presenting data and delegating requests triggered by the user to a controlleror presenter Thus
we introduce a pattern which separates the concerns of a) visualization, b) orchestration and c)
(data-) model. A pattern that perfectly fits our needs is the Model-View-Presenter pattern
(MVP). The presenter is the component that orchestrates the interactions between model, view
and (external) services. In this pattern the presenter is in command.

Let's analyze what the responsibility of the view should be:

delegate the user's request to choose an XML document to the presenter

delegate the user's request to load the data from the selected XML document to the presenter
provide the name of the selected XML document to the presenter

accept a file name (of a selected XML document) from the presenter

display a given list of products provided by the presenter (in a ListView control)

= =4 =4 -4 =4

Second refactoring

Assuming that we have such a ProductPresenteclass, we can then refactor the view (or form-)
code like this:

public partial class Form1 : Form

{
public Form1()

{

InitializeComponent();

}

private ProductPresenter presenter;

private void btnBrowse_Click(object sender, EventArgs e)

{

presenter.BrowseForFileName();

}

private void btnLoad_Click(object sender, EventArgs e)

{

presenter.GetProducts();

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



}

public void ShowProducts(IEnumerable<Product> products)

{

listViewl.ltems.Clear();
foreach (Product product in products)

{

var item = new ListViewltem(new[]

{
product.ld.ToString(),

product.Name,
product.UnitPrice.ToString(),
product.Discontinued.ToString()

1
listViewl.ltems.Add(item);

}
}

public string GetFileName()
{

return txtFileName.Text;

}

public void SetFileName(string fileName)

{
txtFileName.Text = fileName;
btnLoad.Enabled = true;

}
}

Note that the above code now contains only display related code or code that delegates a user
request to the presenter. So far, we have achieved a good separation of concerns.

Now we have to implement the presenter. As said before, the presenter is responsible to
orchestrate the collaboration of model, view and external/additional services. Thus, the
presenter should not contain any business logic. The presenter should be slim and slick! He
delegates all work to other components.

Avoid implementing a fat presenter which is consdetio be an antpattern.

We have identified so far (see code above) that the presenter needs at least the following two
methods:

public class ProductPresenter

{

public void BrowseForFileName()

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



public [Enumerable<Product> GetProducts()
{..}
}

The presenter accesses its view (that is in this case the form), via an interface:

public interface IProductView
{
void Initialize(ProductPresenter presenter);
string GetFileName();
void ShowProducts(IEnumerable<Product> products);
void SetFileName(string fileName);

}
Which has to be implemented by the form, that is:

public partial class Form1 : Form, IProductView

{..}
Let's have a look at the implementation of the presenter:

public class ProductPresenter

{
private readonly IOpenFileDialog openFileDialog;
private readonly IProductRepository repository;
private readonly IProductView view;

public ProductPresenter()
{
view = new Form1();
view.Initialize(this);
repository = new ProductRepository();
openFileDialog = new OpenFileDialogWrapper();
}

public void BrowseForFileName()
{
openFileDialog.Filter = "XML Document (*.xml)|*.xmI]All Files (*.*)]*.*";
var result = openFileDialog.ShowDialog();
if (result == DialogResult.OK)
view.SetFileName(openFileDialog.FileName);

public void GetProducts()
{

var products = repository.GetByFileName(view.GetFileName());
view.ShowProducts(products);

}

t-6t2Qa {h[L5 {2 Foilehieddm 5335t 2 LIYSy

v



}

It's obvious from the above code that the presenter does not do much more than orchestrate.
It interacts with the view and the repository as well as with an open file dialog service (this is
just a wrapper around the OpenFileDialog class of the .NET framework).

Please note the second line in the constructor. The presenter calls the Initialize() method of the
view and passes itself as a reference. As such the view gets knowledge of its responsible
presenter. Remember that the presenter is in command of the model-view-presenter triad!

Starting the application

How can the application be started? After the refactoring, we do not give the command to the
view/form but to the presenter. Thus we might have something like this:

static class Program

{
[STAThread]

static void Main()

{
Application.EnableVisualStyles();

Application.SetCompatibleTextRenderingDefault(false);

var presenter = new ProductPresenter();
Application.Run((Form) presenter.View);

}
}

In the Main() method we instantiate a product presenter, which in turn internally creates an
instance of its dedicated view (which is a form in our case). We then use the presenter's view
and pass it to the Run() method of the application object.

We have to add a property View to the presenter to complete its implementation

public IProductView View

{

get { return view; }

}

Step 4: Implementing theepository

We still have to implement the repository. There is just one method we need to implement:

public class ProductRepository : IProductRepository
{

public IEnumerable<Product> GetByFileName(string fileName)

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



{

var products = new List<Product>();
using (var fs = new FileStream(fileName, FileMode.Open))
{
var reader = XmIReader.Create(fs);
while (reader.Read())
{
if (reader.Name != "product") continue;
var product = new Product();
product.ld = int.Parse(reader.GetAttribute("id"));
product.Name = reader.GetAttribute("name");
product.UnitPrice = decimal.Parse(reader.GetAttribute("unitPrice"));
product.Discontinued = bool.Parse(reader.GetAttribute("discontinued"));
products.Add(product);
}
}
return products;
}
}

Now | have every piece needed to make the application run.

Refactoring again

But wait a moment! There are still at least 3 concerns handled by the repository class. One is
the retrieval of the data, another one is the looping over the nodes of the XML document and
the third one is the mapping of a XML node to a product. So let's refactor again:

public class ProductRepository : IProductRepository
{

private readonly IFileLoader loader;

private readonly IProductMapper mapper;

public ProductRepository()

{
loader = new FileLoader();
mapper = new ProductMapper();

}

public [Enumerable<Product> GetByFileName(string fileName)
{
var products = new List<Product>();
using (Stream input = loader.Load(fileName))
{
var reader = XmIReader.Create(input);
while (reader.Read())
{
if (reader.Name !="product") continue;
var product = mapper.Map(reader);
products.Add(product);

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



}
}

return products;
}
}

Now | have a file loader which is responsible for loading the XML document and returning it as a
stream to me. And | also have a mapper, which is responsible to map a single XML node to a
product. As a result, the code of the repository has become very simple and manageable.

So let's have a look at the implementation of the mapper component:

public interface IProductMapper

{
Product Map(XmIReader reader);

}

public class ProductMapper : IProductMapper

{
public Product Map(XmIReader reader)

{
if (reader == null)
throw new ArgumentNullException("XML reader used when mapping cannot be null.");
if (reader.Name != "product")
throw new InvalidOperationException("XML reader is not on a product fragment.");

var product = new Product();

product.ld = int.Parse(reader.GetAttribute("id"));

product.Name = reader.GetAttribute("name");

product.UnitPrice = decimal.Parse(reader.GetAttribute("unitPrice"));
product.Discontinued = bool.Parse(reader.GetAttribute("discontinued"));
return product;

The mapper code is very straight forward. | have even introduced some basic error handling.
Note, that | could still go farther with SRP and introduce an XML attribute parser (helper-) class
if | want to go to the max... but let's just stop here for the moment!

The implementation of the (file-) loader is also very simple

public interface IFileLoader

{

Stream Load(string fileName);

}

public class FileLoader : IFileLoader

{

public Stream Load(string fileName)

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



{

return new FileStream(fileName, FileMode.Open);

}
}

Class diagram of the fully refactored sample

The image below shows the class diagram of the fully refactored sample. There are many
components involved in this little sample. But each component is very simple and has just one
single responsibility.

ProductPresenter

IProductReposit... ' | ¥ repostory
S —1 Class

Interface I

¥ | nFileDialog 10penfile Dialog

— Interface

IProductRepository ~ ICpenFileDialog
1ProductMapper ¥ | ¥ mapper ProductReposit... '# & view ‘_ OpenFlleDialog... *
Interface | 1 Class Class
IProductView L3
rterface
= Methods
ooz @ GeyFileNsme
ProductMapper ~ ¥ PreductReposit., ProductView
Class T =
Forml ¥ Product
Class Class
P loader < Form
¥ = Propesties
IFileLoader ¥ ¥ Discontinued
interface =
= Name
% UnitPrice
IFleloacer
FleLoader

Class

The ample code

You can find the code of the original and the fully refactored sample, here. Just use a SVN client
like TortoiseSVN to download the code.

Summary

You might be overwhelmed by the sheer amount of classes (and code) introduced by the
refactoring. For this simple sample, it is certainly overhead, not worth the investment. But don't
forget that real applications are more complex than this simple example. The more complex
and the bigger an application becomes the more important SRP becomes. With the aid of the

-tl-()tzQé {h[L5 {2toilehieNdm 5305t 2LI¥Syd p


http://auramares.googlecode.com/svn/trunk/SRP

SRP, a complex problem can be reduced to many small sub-problems which are easy to solve in
isolation. Just remember the sample of the Roman empire | gave you in the introduction of this
post.

When respecting and applying the SRP in my daily work, | have always attained huge benefits.
My code is more robust, more stable, better understandable and maintainable. At the end, | get
a better and much cleaner design.

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



OCP: Open Closed Prin@apl

SOFTWARE ENTITIES (CLASSES, MODULES, FUNCTIONS, ETC.) SHOULD BE OP

FOR EXTENSION BUT CLOSED FOR MODIFICATION
http://www.objectmentor.com/resources/articles/ocp.pdf

‘. 5
OPEN CLOSED PRINCIPLE

Open Chest Surgery Is Not Needed When Putting On A Coat

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://www.objectmentor.com/resources/articles/ocp.pdf

Open Gbsed Principldoy Joe Ocampo

¢KS 2Ly Of2aSR LINAYOALX S Aa 2yS 2F (GKS 2f RSa
you with the history since you can find countless articles out on the net. But if you want a really
comprehensive read, pleasechS O1 2 dzi w20 SNI al NIAyQad SEOSff Sy
The open closed principle can be summoned up in the following statement.

The open/closed principle states "software entities (classes, modules, functions, etc.) should be
open for extension, but closed for modification™;[1] that is, such an entity can allow its behavior
to be modified without altering its source code.

Sounds easy enough but many developers seem to miss the mark on actually implementing this
AAYLIX S SEGSyanrot SitidabdutiskBfiskid seipas auchRs? fgeDtfiat thiey A y |
have never been taught how to approach applying OCP to class design.

A case study in OCP ignorance

Scenario: We need a way to filter products based off the color of the product.

All entities in a software development ecosystem behave a certain way that is dependent upon

a governed context. In the scenario above, you realize that you are going to need a Filter class

that accepts a color and then filters all the products that adhere to that color.

ThS FAEGSNI Of I aaQ NI A& LIy gbaséd bff the écon df @teriigby F A€ G S NJ
color (its behavior). So your goal is to write a class that will always be able to filter products.

(Work with me on this | am trying to get you into a mindset because that is all OCP truly is at its

heart.)

To make this easier | like to tell developers to fill in the following template.

The {class} is responsible for {its job} by {action/behavior}

The ProductFilteris responsible for filtering productsby color

-tl-()tZQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



Now,f SGQa oNAGS 2dzNJ aAYLX S Oflaa (2 R2 (KAAY

public class ProductFilter

{

public IEnumerable<Product> ByColor(IList<Product> products, ProductColor productColor)
{

foreach (var product in products)

{
if (product.Color == productColor)

yield return product;

}
}
}

As you can see this pretty much does the job of filtering a product by color. Pretty simple, but
imagine if you had the following typical conversation with one of your users.

~

' ASNY 2SS ySSR (2 taz2 o6S FofS G2 FA{GSNIoe a

puj
Q)¢
>
(0p))

5SSt 2LISNY aWdzad &aATS Ff2yS 2N O02f 2NJ |y
'ASNY a!'YY LINRPolofeé o020K®E

5SSt 2LISNY AGDNBLF GHE

{2 tSGQ&a dzaS 2dzNJ h/t aOSyFINAR2 GSYLIX 4GS I3FAyo®
The ProductFilteris responsible for filtering products by color

The ProductFilteris responsible for filtering productsby size

The ProductFilteris responsible for filtering productsby color and size

Now the code:

public class ProductFilter

{

public IEnumerable<Product> ByColor(IList<Product> products, ProductColor productColor)
{

foreach (var product in products)

{
if (product.Color == productColor)

yield return product;

}
}

public [Enumerable<Product> ByColorAndSize(IList<Product> products,

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o




ProductColor productColor,
ProductSize productSize)

{

foreach (var product in products)

{
if ((product.Color == productColor) &&

(product.Size == productSize))
yield return product;

}
}

public [Enumerable<Product> BySize(IList<Product> products,
ProductSize productSize)

{

foreach (var product in products)

{
if ((product.Size == productSize))
yield return product;
}
}
}

This is great but this implementation is violating OCP.

Where'd we go wrong?
[ SGQa NB DA a krtiMaittirehbs xoysay abdt-OGP. w 2 6
Robert Martin says modules that adhere to Open-Closed Principle have 2 primary attributes:

1. "Open For Extension™ - It is possible to extend the behavior of the module as the
requirements of the application change (i.e. change the behavior of the module).

2. "Closed For Modification" - Extending the behavior of the module does not result in the
changing of the source code or binary code of the module itself.

[ S askitke following question to ensure we AREviolating OCP.

Every time a user asks for new criteria to filter a product, do we have to modify the
ProductFilter class?
Yes! This means it is not CLOSED for modification.

Every time a user asks for new criteria to filter a product, can we extend the behavior of the
ProductFilter class to support the new criteria, without opening up the class file again and
modifying it?

No! This means it is not OPEN for extension.

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



Solutions

One of the easiest ways to implement OCP is utilize a template or strategy pattern. If we still

allow the Product filter to perform its job of invoking the filtering process, we can put the

implementation of filtering in another class. This is achieved by mixing in a little LSP.

Here is the template for the ProductFilterSpecification:

public abstract class ProductFilterSpecification

{

public IEnumerable<Product> Filter(IList<Product> products)

{
return ApplyFilter(products);

}

protected abstract IEnumerable<Product> ApplyFilter(IList<Product> products);
}

[ SGQa 32 KSFR FYyR ONBIFGS 2dz2NJ FANERG

public class ColorFilterSpecification : ProductFilterSpecification

{

private readonly ProductColor productColor;

public ColorFilterSpecification(ProductColor productColor)

{

this.productColor = productColor;

}

protected override IEnumerable<Product> ApplyFilter(IList<Product> products)

{

foreach (var product in products)

{
if (product.Color == productColor)

yield return product;

Now all we have to do is extend the actual ProductFilter class to accept our template

ProductFilterSpecification.

public [IEnumerable<Product> By(IList<Product> products, ProductFilterSpecification filterSpecification)

{

return filterSpecification.Filter(products);

}

OCP goodness!

-t 6t2Q4 {h[L5 { 2 EoiehieNdm 5S @St 2 LIV Sy i


http://en.wikipedia.org/wiki/Template_method_pattern
http://en.wikipedia.org/wiki/Strategy_pattern
http://www.lostechies.com/blogs/chad_myers/archive/2008/03/11/ptom-the-liskov-substitution-principle.aspx

So let@ make sure we are NOTviolating OCP and ask the same questions we did before.

Every time a user asks for new criteria to filter a product do we have to modify the

ProductFilter class?

No! Because we have marshaled the behavior of filtering to the ProductFilterSpecification
"Closed for modification™

Every time a user asks for new criteria to filter a product can we extend the behavior of the
ProductFilter class to support the new criteria, without opening up the class file again and
modifying it?

Yes! All we simply have to do,ipass in a new ProductFilterSpecification. "Open for
extension"

b2g tSGQa 2dzad YIS &dz2NBE ¢ Sntéatio@ssiyh@ld Y2RAFASR
ProductFilter. All we simply have to do is validate that our ProductFilter still has the same
behavior as before.

The ProductFilteris responsible for filtering productsby color: Yes it still does that!
The ProductFilteris responsible for filtering productsby size: Yes it still does that!
The ProductFilteris responsible for filtering productsby color and size: Yes it still does that!

If you are a good TDD/BDD practitioner you should already have all these scenarios covered in
your Test Suite.

Here is the final code:

namespace OCP_Example.Good
{
public class ProductFilter
{
[Obsolete("This method is obsolete; use method 'By" with ProductFilterSpecification™)]
public IEnumerable<Product> ByColor(IList<Product> products, ProductColor productColor)
{
foreach (var product in products)
{
if (product.Color == productColor)
yield return product;
}
}

[Obsolete("This method is obsolete; use method 'By* with ProductFilterSpecification™)]
public [IEnumerable<Product> ByColorAndSize(IList<Product> products,

ProductColor productColor,

ProductSize productSize)

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o




{

foreach (var product in products)

{
if ((product.Color == productColor) &&

(product.Size == productSize))
yield return product;

[Obsolete("This method is obsolete; use method 'By* with ProductFilterSpecification™)]
public IEnumerable<Product> BySize(IList<Product> products,
ProductSize productSize)

{

foreach (var product in products)

{
if ((product.Size == productSize))
yield return product;

public [IEnumerable<Product> By(IList<Product> products, ProductFilterSpecification filterSpecification)

{

return filterSpecification.Filter(products);

}
}

public abstract class ProductFilterSpecification

{

public [Enumerable<Product> Filter(IList<Product> products)

{
return ApplyFilter(products);

}

protected abstract IEnumerable<Product> ApplyFilter(IList<Product> products);

}

public class ColorFilterSpecification : ProductFilterSpecification

{

private readonly ProductColor productColor;

public ColorFilterSpecification(ProductColor productColor)

{

this.productColor = productColor;

}

protected override IEnumerable<Product> ApplyFilter(IList<Product> products)

{

foreach (var product in products)
{
if (product.Color == productColor)
yield return product;

t-6t2Qa {h[L5 {2 Foilehieddm 5335t 2 LIYSy



}
public enum ProductColor
{
Blue,
Yellow,
Red,
Gold,
Brown
}
public enum ProductSize
{
Small, Medium, Large, ReallyBig
}
public class Product
{
public Product(ProductColor color)
{
this.Color = color;
}

public ProductColor Color { get; set; }

public ProductSize Size { get; set; }
}

[Context]

public class Filtering_by_color

{
private ProductFilter filterProduct;
private IList<Product> products;

[SetUp]

public void before_each_spec()

{
filterProduct = new ProductFilter();
products = BuildProducts();

}

private IList<Product> BuildProducts()
{
return new List<Product>
{

new Product(ProductColor.Blue),
new Product(ProductColor.Yellow),
new Product(ProductColor.Yellow),
new Product(ProductColor.Red),
new Product(ProductColor.Blue)

k

tlot2Qa {h[L5

{ 2 ToiTechiehdm 5 S @St 2 LIV Sy (i

v



[Specification]
public void should_filter_by_the_color_given()
{
int foundCount = 0;
foreach (var product in filterProduct.By(products, new ColorFilterSpecification(ProductColor.Blue)))

{

foundCount++;

Assert.That(foundCount, Is.EqualTo(2));
}
}
}

t-6t2Qa {h[L5 {2 Foilehiedddm 5835t 2LIYSy i



OCP revisited in Ruldyy Joe Ocampo

| was playing with some Ruby code this weekend and thought | would show some OCP with
Ruby.

For more of an in-depth discussion on OCP, please read my previous post.

Now the first thing | want to point out is that dynamic languages are naturally by default open

for extension. Since the types are dynamic, there are no fixed (static) types. This enables us to
have awesome extensibility. It is the closure part of the equation that really scares me more
GKFY FyeldKAYy3d StaSed LT e2dz NBIrHftfte | NByQi
fly3dz 3Sa &2dz Oy ljdzaoOlfe YIS | YSaa 27
dynamic language you just have to exercise greater care, that is all.

{2 tSGQ&a dzaS 2dz2NJ h/t &aOSYyFNA2 GSYLXIGS F3lFAyYy

1 The ProductFilteris responsible for filtering productsby color
1 The ProductFilteris responsible for filtering productshy size
1 The ProductFilteris responsible for filtering productsby color and size

[ SG§Qa 3I2 KSR YR ONBFIGS (G4KS t NPRdzOGCAf GSNJI T

class ProductFilter
attr_reader :products
def initialize(products)
@products = products
end

def by(filter_spec)

end
end

For those that have never created a class in Ruby, let me breakdown the syntax structures.

classkeyword is used to define a class followed by the name of the class. It is important to note
that class names must start with an uppercase letter. The uppercase letter signifies to the Ruby

interpreter that thisisconstant; Y ST y Ay 3 (G KI 0 6KSYS@OSNI 6 K& GSNY a

will always reference this class structure.

attr_reader keyword used to signify a read only accessor (read only property). The property
name follows the colon.

-tl-()tZQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



http://www.ruby-lang.org/en/
http://www.objectmentor.com/resources/articles/ocp.pdf
http://www.ruby-lang.org/en/
http://www.lostechies.com/blogs/joe_ocampo/archive/2008/03/21/ptom-the-open-closed-principle.aspx
http://www.ruby-lang.org/en/

def{ Seg2NR Aa dzaSR (2 RSOfINB | YSiK2R o0f201% ¢
constructor method in C#.

The@aeéYoz2t RSy2G4Sa |y AyadlyOS @FrNAIofSd b2iAO0:
typed but is assigned in the constructor through @products reference. The instance variable
@products is assigned to the products parameter variable that is passed into the constructor.

Now that we are talking about products we have to create the actual product class.

class Product
attr_accessor :color
attr_accessor :size

def initialize(color, size)
@color = color
@size = size
end
end

Nothing fancy here, just a class with two read/write accessors Color and Size.

If you remember from my previous post, | was using a template pattern to serve as the basis for
extending the behavior of my filter class. Well | am going to do the same thing here (kind of)
and define an Item_color_filter_spec class.

class Item_color_filter_spec
attr_accessor :color

def initialize(color)
@color = color
end

def apply_to(items)

end
end

Now,L KI @S F Oflaa GKFG OO0SLIia I O2t2NJ I yR KI &
have left out the implementation code of this method on purpose.

The next thing | am going to do is create an array of products | can use against the ProductFilter
class. Ruby makes this pretty painless:

products = [
Product.new("Blue", "Large"),
Product.new("Red", “Large™),
Product.new("Blue", "Medium"),

-tl-()tZQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



http://www.ruby-lang.org/en/

Product.new("Red", "Small"),
Product.new("Blue", "Large"),
Product.new("Yellow", "Small"),

]

{2 6KI
dza A y 3

J2Ay3 2y K

iQa SNBEK L RSOfFNBR | @FNRAIOGT
0KS aldzl,t&sinpl: OSa dw 8¢ @

What you may have noticed is that | actually instantiated several new products in the array. To
AyaaryadAarasS | Oflaa e2dz aAYLX e dzaS GKS aySg¢
objects in Ruby inherit from similar to C#.

Now that | have a collection of products, | am going to give to my product filter class:

product_filter = Product_Filter.new(products)

A

Ly GKS SEFYLXS o0St26 L Y 3A2Ay3 (2 FALGSNI I ¢

blue_products = product_filter.by(Item_color_filter_spec.new("Blue™))

G GKAA LRAYG L Y ONBFOGAY3I | ySg aLOUSYQPO2t 2N,
O2t2NJ (12 FALGSNI 2yd ¢KS t NPRdAzZOGCAT GSNI Of aa ¢
GLOASYQPO2t 2NWTFAE GSNYWaLISOoe o

lfyourantK S O2 RS i GKA& LRAYy(H y20KAYy3A g2dz R KI LILIS
FAfGSNI O2RS &Sido® {2 (G2 R2 GKIFIG ¢S FINB 3I2Ay3 4
GLOSYPO2t 2eNYPTFEAK HS NAPpRaiLssS G KS T2t f 2gAy3 O2RSY

def apply_to(items)
items.select{]item| item.color == @color}
end

Ly G4KS O2RS |062@S GKS al-LJLerqJ s YSuKQR Aa E
GKSy OFftf (GKS aaStSoi YSGK2R - f
statement in curly braces } (INRudé & I & LJNE O¢ Aa | y 202800 GKIFG K3
2y UKAA fFGSNOD ¢KS LIALIS of 201 ,simjlaptéther & dza SR
parameters of a method. The actual statement that is executed is after the pipe block. We are

trustind G KF G GKS aaStSOté YSUK2ZR 2F GUKS | NNl & 20:¢
(product) it contains and pass it into Proc. Once in the Proc, we simply determine if the color of

LINE RdzOG YIFGOKS&a GKS AyaidlyOS NN IStieaase a X O2 f 2 N.
GKS O2t2N) adofdzS¢d 2KSy GKS t NRO S@Ifdzr 6Sa G2
method returns.

,2dz OFy LJ2aaiot dam&fedpressiGninlC# & LINR O¢ (2 |

-tl-()tZQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



http://www.ruby-lang.org/en/
http://msdn2.microsoft.com/en-us/library/bb397687.aspx

(Normally | would have used rSpeci 2 32 9SNY SOSNEBGKAY3I L Y R2Ay13
BDD as well. | wanted to focus on the Ruby language in general.)

Nowifyourunthecode,@ 2dz ¢Aftf KI @S (KNBS
@2dz 1y26K 2SSttt tSGQa AGSNXaGSs

blue_products.each do |product|
puts(product.color)
end

Now remember, @ 6 f dzS Y LINR RdzO(G & ¢ A a 2roy2 SFONINIKeF &2 o /S GiSdh OtKKE.
R2 2uKSM]268§ Ga Ay wdzmeéeov GKFG FOOSLIia | aLINR
1Se&62NR yﬁ GSNNAyluSR gAOUK (0KS aSyR¢ (Seg2NR
objectd &SI OKé YSi 2JSR1 pridact. A hé eyicH meth@d itelakebSer each

product, A { LJI-“ééé Al 2 GKS GLINRBO¢ |yR ¢S aAYLX e
GLIzia¢ YSGK2R® ¢KS NBadzZ G 2F GKAa avltt adlas

Blue
Blue

Blue
So there you have it, 3 blue products!

lknow,y 2 0 KAy 3 &LISOAIf NRARIKIUI KRubyshdethessy 2 ¢ £ S Qa LI | &

That sure is a lot effort to filter a product by color. Imagine if you had to keep adding d|fferent
OQfQNJTAquNﬁ¢ ,2m g2dZ R KIS (G2 ONBI aS @SN
RdzZff FyR Y2ali GFrGAO f1Fy3dzr 3Sa KI @S ufrééﬁ 0 K

A 7 A

- 002 YLJX AaKk ﬂKS FYS GKAYy3 Fa GKS aO2ft 2N FALGS

g.x

We are going to create a filter spec that filters all products that are yellow.

Remember | told you that Ruby views all uppercase variable names as constants; well we are
going to harness the power of this convention and create a constant to hold the reference to
the lambda. After all, DRY principles still apply here.

YELLOW_COLOR_FILTER_SPEC = lambda do |products|
products.select{|product| product.color == "Yellow"}
end

Nothing in the code block above should be foreign at thispoint, SEOSLIG F2NJ G4 KS af I Y
G2NRd® 2KIG GKS afl YORFé¢ 1Se@v2NR R2Sa Aa GSftf
O2yadlyd a,9[[h2y/ h[hwyCL[¢Owyp{to/ o

-tl-()tZQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



http://rspec.info/
http://www.ruby-lang.org/en/
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

We have to now modify our ProductFilter class to accept a Proc object. All you have to do is add
the following method to the ProductFilter class.

def by_proc(&filter_spec_proc)
filter_spec_proc.call(@products)
end

¢CKAad YSOK2R KIF& F LI NFYSGSNI yI Yefel an@amparfaid S NIy a LIS
preceding its declaration. This tells the Ruby interpreter to expect a Proc object to be passed in.

Since we are expecting a Proc object, all we have to do, is use the "call" method and pass the

products instance variable to the Proc.

b2g tSGQa 6ANB (KS ¢6K2fS GKAy3a G23S0HKSNW
yellow_products = product_filter.by_proc(&YELLOW_COLOR_FILTER_SPEC)

Pretty simple, about the only thing you have to remember is that you have to place the

F YLISNEFYR 0STF2NBE (GKS t NPO O2yHest WNZAR SXKBY(IRE dz N
class.

But wait there is morel!

Our ProductFilter class now has a method that accepts a Proc object. In our previous example,
we passed it a constant that referenced a lambda Proc block. But since it accepts a Proc we can
simply write the block in line with the method call like this.

With our new found knowledge let@ FA € GSNJ £ f GKS dawSRé LINRRdAzOG &

red_products = product_filter.by_proc do |products|
products.select{|product| product.color == "Red"}
end

Parentheses are optional in Ruby when you call a method.

Pretty nice huh?

Now for something really freaky, for all you static type people!

letd &l & @2dz FNByQi RSFfAYy3 gAGK LINPRdAzOGA | ye@yY?

Cars have 4 wheels but they also havecolorR 2 y QI {j ikv®@dde ni2eSfSve could filter
the Cars just like we are able to filter the Products. Wait! We can, we already wrote it!

-tl-()tZQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o




2S KIF@S (KIFG aLOGSYQPO2f 2NWFAT GSNYpPaLISoe OflFaao
alreadyhasalJdzN1J2 8 S o6dzi GKS aLOSYQWPO2ft 2NIWYWTFAE GSNWPYALISOE

class Car
attr_accessor :color
def initialize(color)
@color = color
end
end

cars=[
Car.new("Red"),
Car.new("Blue"),
Car.new("Red"),
Car.new("Blue")

]

blue_filter = Item_color_filter_spec.new("Blue")
blue_cars = blue_filter.apply_to(cars)

Wow, talk about reuse!!!

How is this possible? Well, remember types do not exist in Ruby. There are objects but objects

are duck typed when you ask them to perform an action. Meaning, if it walks like a duck or

quacks likeaduck, A G Ydzad o6S | RdzO1® ¢KS aLOGSYQPO2f 2NYPTFAC
an array of objects. Itis then going toiterateovS NJ G KS | NN} & 2F 262S06a |y
accessor on each object to check for equality against the instance variable that was passed in

OKNRdzZAK GKS O2yaidNHzZU02NX®» LG R2SayQid OFNB AT i
whatever the object is, it has to have an accessor of "color."

I know this is a ton on information to digest all at once but | am just very passionate about the
Ruby language. | see tremendous potential in its future, especially with its entrance into the
.Net space, through the IronRuby project. | can easily see it over throwing the Visual Basic
crowd once it becomes more main stream in the .Net community.

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://en.wikipedia.org/wiki/Duck_typing
http://www.ironruby.net/

The open closed principlby Gabriel Schenker

In the previous two posts | discussed the Sof S.0.L.1.D. which is the
Single Responsibility Principle (SRP) and the D of S.O.L.1.D. which

corresponds to the Dependency Inversion Principle (DI). This time | §
want to continue this series with the second letter of S.0.L.I.D.,
namely the O which represents the Open Close Principl@CP).

Introduction

In object-oriented programming the open/closed principle states:

Software entities (classes, modules, functions, etc.) should be @#
for extension, but closed for mifidation. '

That is, such an entity can allow its behavior to be altered without altering its source code.

The first person who mentioned this principle was Bertrand Meyer. He used inheritance to
solve the apparent dilemma of the principle. Once completed, the implementation of a class
should only be modified to correct errors, but new or changed features would require a
different class to be created.

Ly O2y UGN} ad G2 aSe SR RISEF AV GIARKS NUK SINES RS LI
polymorphic open/close principle and refers to the use of abstract interfaces. This

implementation can be changed and multiple implementations can be created and

polymorphically substituted for each other. A class is open for extension when it does not

depend directly on concrete implementations. Instead it depends on abstract base classes or

interfaces and remains agnostic about how the dependencies are implemented at runtime.

OCP is about arranging encapsulation in such a way that it's effective, yet open enough to be

extensible. This is a compromise, i.e. "expose only the moving parts that need to change, hide
everything else"

There are several ways to extend a class:
1. inheritance

2. composition
3. proxy implementation (special case for composition)

-tl-()tzQé {h[L5 {2toilehieNdm 5305t 2LI¥Syd p



http://gabrielschenker.lostechies.com/blogs/gabrielschenker/archive/2009/01/21/real-swiss-don-t-need-srp-do-they.aspx
http://gabrielschenker.lostechies.com/blogs/gabrielschenker/archive/2009/01/30/the-dependency-inversion-principle.aspx
http://en.wikipedia.org/wiki/Bertrand_Meyer

Sealed classes

Is a sealed class contradicting the OCP? What one needs to consider when facing a sealed class
is whether one can extend its behavior in any other way than inheritance? If one injects all
dependencies, which are extendable, they essentially become interfaces, allowing a sealed class
to be open for extension. One can plug in new behavior by swapping out
collaborators/dependencies.

What about inheritance?

The ability to subclass provides an additional way to accomplish that extension by not putting
the abstraction in codified interfaces but in overridable behavior.

Basically you can think of it a bit like this, given a class that has virtual methods, if you put all of
those into an interface and depended upon that, you'd have an equivalent openness to
extension but through another mechanism; a Template methodin the first case and a
delegationin the second.

Since inheritance gives a much stronger coupling than delegation, the puritanical view is to
delegate when you can and inherit when you must. That often leads to composable systems
and overall realizes more opportunities for reuse. Inheritance based extension is somewhat
easier to grasp and more common since it's what is usually thought.

As stated above the OCP can be followed when a class does
1Inot depend on the concrete implementation of dependencies
but rather on their abstraction. As a simple sample consider an
authentication service that references a logging service to log

[ L5 { 2 FoiTechieNdm 5 S @St 2 LI¥Syd p




who is trying to be authenticated and whether the authentications has succeeded or not.

public class AuthenticationService

{

private ILogger logger = new TextFileLogger();
public ILogger Logger { set{ logger = value; }}

public bool Authenticate(string userName, string password)

{
logger.Debug(*"Authentication '{0}", userName);

// try to authenticate the user

}
}

Since the authentication service depends on an (abstract) interface, ILoggerof the logging
service,

public interface ILogger

{
void Debug(string message, params object[] args);
// other methods omitted for brevity

}

not on a concrete implementation, the behavior of the component can be altered without
changing the code of the authentication service. Instead of logging to a text file, which might be
the default, we can implement another logging service that logs to the event log or to the
database. The new logger service has to implement the interface ILogger At runtime we can
inject a different implementation of the logger service into the authentication service, e.g.

var authService = new AuthenticationService();
authService.Logger = new DatabaselLogger();

There are some good examples publicly available of how a project can adhere to the OCP by
using composition. One of my favorites is the OSS project Fluent NHibernate. As an example,
the auto-mapping can be modified and/or enhanced without changing the source code of the
LINE 2SO0 [ SiQa KI @ 3utdPersbteh@Woddl dass forfliGtratiea. | 3 S

var model = new AutoPersistenceModel();
model.WithConvention(convention =>
{
convention.GetTableName = type => "tbl_" + type.Name;
convention.GetPrimaryKeyName = type => type.Name + "Id";
convention.GetVersionColumnName = type => "Version";
}
)

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o

27

7

u K


http://fluentnhibernate.org/
http://code.google.com/p/fluent-nhibernate/source/browse/trunk/src/FluentNHibernate/AutoMap/AutoPersistenceModel.cs

Without changing the source code of the AutoPersistenceModetlass we can change the

behavior of the auto mapping process significantly. In this case we have (with the aid of some

lambda expression magic ¢> see this post) changed some of the conventions used when auto-
mapping the entities to database tables. We have declared that the name of the database

tables should always be the same as the name of the corresponding entity and that the primary
keyof SF OK Gl ofS aKz2dzZ R KIF@S (GKS yIFYS 2F (KS O2NJ
0KS @SNBRA2Y O2fdzyy 2F SIOK GlofS &aKz2dzZ R 6S yI
This modification of the (runtime) behavior is possible since the AutoPersistenceModetlass

depends on abstractions ¢ in this case lambda expressions ¢ and not on specific

implementations. The signature of the WithConventionmethod is as follows

public AutoPersistenceModel WithConvention(Action<Conventions> conventionAction)

OCP by Inheritance

[ SG§Qa |aadzyS ¢S sl yid (2
application which can draw different shapes in a window.

INHERITANCE (iR
At first we start with a single kind of graphical shape,

namely lines. A line might me defined as follows I

public class Line

{

public void Draw(ICanvas canvas)
{/* draw a line on the canvas */ }

}

It has a draw method which expects a canvas as parameter.

Now our paint application might contain a Painterclass which is responsible for managing all
line objects and which contains a method DrawAllwhich draws all lines on a canvas.

public class Painter

{

private IEnumerable<Line> lines;

public void DrawAll()
{

ICanvas canvas = GetCanvas();
foreach (var line in lines)

{

line.Draw(canvas);

}
}

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



http://gabrielschenker.lostechies.com/blogs/gabrielschenker/archive/2009/02/03/step-by-step-introduction-to-delegates-and-lambda-expressions.aspx

/* other code omitted for brevity */

}

This application has been in use for a while. Now all of the sudden the user does not only want
to paint lines but also rectangles. A naive approach would now be to first implement a new
class Rectanglesimilar to the line class which also has a Draw method.

public class Rectangle

{

public void Draw(ICanvas canvas)
{/* draw a line on the canvas */ }

}

Next, modify the Painterclass to account for the fact that we now also have to manage and
paint rectangles.

public class Painter

{

private IEnumerable<Line> lines;
private IEnumerable<Rectangle> rectangles;

public void DrawAll()
{

ICanvas canvas = GetCanvas();
foreach (var line in lines)

{

line.Draw(canvas);

}

foreach (var rectangle in rectangles)

{

rectangle.Draw(canvas);

}
}
}

One can easily see that the Painterclass is certainly not adhering to the open/closed principle.
To be able to manage and paint the rectangles we have to change its source code. As such, the
Painterclass was not closed for modificatios

Now, we can easily fix this problem by using inheritance. We just define a base class Shape
from which all other concrete shapes (e.g. lines and rectangles) inherit. The Painterclass then
2yfte RSIfa ¢oAGK aKILISas®haedassQa FTANERG RSTAYS (K

public abstract class Shape

{

public abstract void Draw(ICanvas canvas);

}

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o




All concrete shapes have to inherit from this class. Thus, we have to modify the Lineand the
Rectangleclass like this (note the override keyword on the draw method)

public class Line : Shape

{

public override void Draw(ICanvas canvas)
{/* draw a line on the canvas */ }

}

public class Rectangle : Shape

{

public override void Draw(ICanvas canvas)
{/* draw a line on the canvas */ }

}
Finally we modify the Painterso it only references shapes and not lines or rectangles

public class Painter

{

private [Enumerable<Shape> shapes;

public void DrawAll()
{

ICanvas canvas = GetCanvas();
foreach (var shape in shapes)

{

shape.Draw(canvas);
}
}
}

If ever the user wants to extend the paint application and have other shapes like ellipses or
Bezier curves, the Painterclass (and especially the DrawAllmethod) does not have to be
changed any more. Still, the Paintercan draw ellipses or Bezier curves since these new shapes
will have to inherit from the (abstract) base class Shape The Painterclass is now closed for
modificationbut open for extensiobecause we can add other kinds of shapes.

Conclusion

L Cike to §ee OCP done in conjunction with "prefer composition over inheritance" and as such,

| prefer classes that have no virtual methods and are possibly sealed, but depend on

abstractions for their extension. L O2 Yy aARSNJ G KA & (2CPaSouiiekS aARSI
enforced the "C" and provided the "O" simultaneously. Of course, please don't construe this as

meaning that there is no way to use inheritance properly or that inheritance somehow violates

OCP, it doesn't. Due of the way most of us learned OOP, we tend to think of inheritance first,

when people talk about "extension of an object”.

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o




LSP: Liskov Substitution Principle

FUNCTIONS THAT USE ... REFERENCES TO BASE CLASSES MUST BE ABLE TO |

OBJECTS OF DERIVED CLASSES WITHOUT KNOWING IT.
http://www.objectmentor.com/resources/articles/Isp.pdf

LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://www.objectmentor.com/resources/articles/lsp.pdf

Liskov Substitution Principley Chad Myers

In my first (of hopefully more than one) post for The Los Techies Pablo's Topic of the Month -
March: SOLID Principles effort, I'm going to talk about The Liskov Substitution Principle, as
made popular by Robert 'Uncle Bob' Martin in The C++ Report.

I'm going to try as much as possible not to repeat everything that Uncle Bob said in the afore-
linked PDF, you can go read the important stuff there. I'm going to try to give some real
examples and relate this to the .NET world.

In case you're too lazy to read the link, let me start off with a quick summary of what LSP is: If
you have a base class BASE and subclasses SUB1 and SUB2, the rest of your code should always
refer to BASE and NOTSUBL and SUB2.

A case study in LSP ignorance

The problems that LSP solves are almost always easily avoidable. There are some usual tell-tale
signs that an LSP-violation is appearing in your code. Here's a scenario that walks through how
an LSP-violation might occur. I'm sure we've all run into similar situations. Hopefully by walking
through this, you can start getting used to spotting the trend up front and cutting it off before
you paint yourself into a corner.

Let's say that somewhere in your data access code you had a nifty method through which all
your DAQ's/Entities passed and it did common things like setting the
CreatedDate/UpdatedDate, etc.

public void SaveEntity(IEntity entity)
{

DateTime saveDate = DateTime.Now;

if( entity.IsNew )
entity.CreatedDate = saveDate;

entity.UpdatedDate = saveDate;

DBConnection.Save(entity);

}

Clever, works like a champ. Many of you will hopefully have cringed at this code. | had a hard
time writing it, but it's for illustration. There's a lot of code out there written like this. If you
didn't cringe and you don't see what's wrong with that code, please continue reading. Now, the
stakeholders come to you with a feature request:

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://lostechies.com/blogs/chad_myers/archive/2008/03/07/pablo-s-topic-of-the-month-march-solid-principles.aspx
http://lostechies.com/blogs/chad_myers/archive/2008/03/07/pablo-s-topic-of-the-month-march-solid-principles.aspx
http://www.objectmentor.com/resources/articles/lsp.pdf

Whenever a user saves a Widget, we need to generate a Widget Audit record in the database
for tracking later.

You might be tempted to add it to your handy-dandy SaveEntity routine through which all
entities pass:

public void SaveEntity(IEntity entity)

{
WidgetEntity widget = entity as WidgetEntity;
if( widget != null)

{
GenerateWidgetAuditEntry(widget);

}
/..

Great! That also works like a champ. But a few weeks later, they come to you with a list of 6
other entities that need similar auditing features. So you plug in those 6 entities. A few weeks
later, the come to you and ask you something like this:

When an Approval record is saved, we need to verify that the Approval is of the correct level. If
it's not the correct level, we need to prompt the user for an excuse, otherwise they can't
continue saving.

Oh boy, that's tricky. Well, now our SaveEntity looks something like this:

public void SaveEntity(IEntity entity)

{
if( (entity as WidgetEntity) = null }{
GenerateWidgetAuditEntry((WidgetEntity) entity);
}

if ((entity as ChocolateEntity) != null){
GenerateChocolateAuditEntry((ChocolateEntity)entity);

}
/..

ApprovalEntity approval = entity as ApprovalEntity;
if( approval != null && approval.Level <2 ){
throw new RequiresApprovalException(approval);

}
/..

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



Pretty soon your small, clever SaveEntity method is 1,500 lines long and knows everything
about every entity in the entire system.

Where'd we gowrong?

Well, there are several places to start. Centralizing the saving of entities isn't the greatest idea.
Putting the logic for auditing whether entries need to be created or not into the SaveEntity
method was definitely the wrong thing to do. Finally, due to the complexities of handling wildly
differing business logic for different entities, you have a control flow problem with the approval
level that requires the use of a thrown exception to break out of the flow (which is akin to a
‘goto’ statement in days of yore).

The concerns of auditing, setting created/updated dates, and approval levels are separate and
orthogonal from each other and shouldn't be seen together, hanging around in the same
method, generally making a mess of things.

More to the point of this blog post; SaveEntity violates the Liskov Substitution Principle. That is
to say, SaveEntity takes an IEntity interface/base class but deals with specific sub-classes and
implementations of IEntity. This violates a fundamental rule of object-oriented design
(polymorphism) since SaveEntity pretends to work with any particular IEntity implementation
when, in fact, it doesn't. More precisely, it doesn't treat all IEntity's exactly the same, some get
more attention than others.

Why is this a problem? What if you were reusing your terribly clever SaveEntity method on
another project and have dozens of IEntity implementations and the stakeholders for that
project also wanted the auditing feature. Now you've got a problem.

Solutions

One fine approach to this problem of doing things at-the-moment-of-saving would be to use
the Visitor Pattern as described by Matthew Cory in this post. Though, | would say in this
particular example, there is a much deep-rooted and systemic design problem which revolves
around the centralization of data access.

Another, in our case more preferable, way to go might be to use the repository pattern for
managing data access. Rather than having "One Method to Rule them All", you could have your
repositories worry about the Created/Updated date time and devise a system whereby all the
repository implementations share some of the Created/Updated date entity save/setup logic.

As specific one-off problems arise (such as auditing, extra approval/verification, etc.), they can
be handled in a similarly one-off manner. This is achieved by the individual entity's related
repository (who knows all about that one type of entity and that's it). If you notice that several

-tl-()tZQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://en.wikipedia.org/wiki/Visitor_pattern
http://chocolatefordogs.com/
http://chocolatefordogs.com/2008/01/25/visitor-pattern-one-fix-for-lsp-violations/
http://martinfowler.com/eaaCatalog/repository.html

entities are doing the same sort of thing (i.e. auditing). You can, create a class and method to
handle auditing in a common manner and provide the various repositories which need auditing
with that functionality. Resist, if at all possible, the urge to create an ‘AuditingRepositoryBase’
class that provides the auditing functionality. Inevitably, one of those audit-requiring entities
will have another, orthogonal concern for which you will have another *Base class and, since
you can't do multiple inheritance in .NET, you are now stuck. Prefer composition of
functionality over inheritance of functionality whenever possible.

If you have a rich domain model, perhaps the most elegant approach of all would be to make
things like auditing a first-class feature of the domain model. Every Widget always has at least
one WidgetAuditEntry associated with it and this association is managed through the domain
logic itself. Likewise, the approval level would be best handled higher up in the logic chain to
prevent last minute "gotchas" in the lifecycle that would require something less than elegant
like an exception as a thinly veiled 'goto’ bailout.

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://www.artima.com/lejava/articles/designprinciples4.html
http://www.artima.com/lejava/articles/designprinciples4.html
http://www.artima.com/lejava/articles/designprinciples4.html

ISP: Interface Segregation Principle

CLIENTS SHOULD NOT BE FORCED TO DEPEND UPON INTERFACES THAT THE?

NOT USE
http://www.objectmentor.com/resources/articles/isp.pdf

INTERFACE SEGREGATION PRINCIPLE

You Want Me To Plug This In, Where?

-tl-étzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://www.objectmentor.com/resources/articles/isp.pdf

Interface Segregation Principley Ray Houston

In following suite with the The Los Techies Pablo's Topic of the Month - March: SOLID
Principles, | chose to write a little about the The Interface Segregation Principle (ISP). As Chad
pointed out with LSP, the ISP is also one of Robert 'Uncle Bob' Martin's S.0.L.1.D design
principles.

Basically ISP tells us that clients shouldn't be forced to implement interfaces they don't use. In
other words, if you have an abstract class or an interface, then the implementers should not be
forced to implement parts that they don't care about.

| was having trouble thinking of a real world example for ISP but then was reminded about
implementing a custom Membership Provider in ASP.NET 2.0. | had completely blocked that
monstrosity out of my mind (for good reason).

The Membership Provider was a way to integrate with some of the ASP.NET's built in
management of users and its associated server controls. For me, it ended up being a lot more
trouble than it was worth, but it turns out to be a good example of a fat interface. In order to
implement your own Membership Provider you "simply" implement the abstract class
MembershipProvider like so:

public class CustomMembershipProvider : MembershipProvider

{

public override string ApplicationName

{
get

{

throw new Exception("The method or operation is not implemented.");

}

set

{

throw new Exception("The method or operation is not implemented.");

}
}

public override bool ChangePassword(string username, string oldPassword, string newPassword)

{

throw new Exception("The method or operation is not implemented.");

}

public override bool ChangePasswordQuestionAndAnswer(string username, string password,
string newPasswordQuestion, string newPasswordAnswer)

{

throw new Exception("The method or operation is not implemented.");

}

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://lostechies.com/blogs/chad_myers/archive/2008/03/07/pablo-s-topic-of-the-month-march-solid-principles.aspx
http://lostechies.com/blogs/chad_myers/archive/2008/03/07/pablo-s-topic-of-the-month-march-solid-principles.aspx
http://www.objectmentor.com/resources/articles/isp.pdf
http://lostechies.com/blogs/chad_myers/default.aspx
http://www.lostechies.com/blogs/chad_myers/archive/2008/03/09/ptom-the-liskov-substitution-principle.aspx

public override MembershipUser CreateUser(string username, string password, string email,
string passwordQuestion, string passwordAnswer, bool isApproved, object providerUserKey,
out MembershipCreateStatus status)

{
throw new Exception("The method or operation is not implemented.");
}
public override bool DeleteUser(string username, bool deleteAllRelatedData)
{
throw new Exception("The method or operation is not implemented.");
}
public override bool EnablePasswordReset
{
get { throw new Exception(""The method or operation is not implemented."); }
}
public override bool EnablePasswordRetrieval
{
get { throw new Exception("The method or operation is not implemented."); }
}

public override MembershipUserCollection FindUsersByEmail(string emailToMatch, int pagelndex,
int pagesSize, out int totalRecords)

throw new Exception("The method or operation is not implemented.");

public override MembershipUserCollection FindUsersByName(string usernameToMatch, int pagelndex,
int pageSize, out int totalRecords)

throw new Exception("The method or operation is not implemented.");

public override MembershipUserCollection GetAllUsers(int pagelndex, int pageSize, out int totalRecords)

{

throw new Exception("The method or operation is not implemented.");

public override int GetNumberOfUsersOnline()

{

throw new Exception("The method or operation is not implemented.");

public override string GetPassword(string username, string answer)

{

throw new Exception("The method or operation is not implemented.");

public override MembershipUser GetUser(string username, bool userlsOnline)

{

throw new Exception(""The method or operation is not implemented.");

t-6t2Qa {h[L5 {2 Foilehieddm 5335t 2 LIYSy

v



public override MembershipUser GetUser(object providerUserKey, bool userlsOnline)

{

throw new Exception("The method or operation is not implemented.");

}

public override string GetUserNameByEmail(string email)

{

throw new Exception("The method or operation is not implemented.");

}

public override int MaxInvalidPasswordAttempts

{

get { throw new Exception("The method or operation is not implemented.");

}

public override int MinRequiredNonAlphanumericCharacters

{

get { throw new Exception("The method or operation is not implemented.");

}

public override int MinRequiredPasswordLength

{

get { throw new Exception("The method or operation is not implemented.");

}

public override int PasswordAttemptWindow

{

get { throw new Exception("The method or operation is not implemented.");

}

public override MembershipPasswordFormat PasswordFormat

{

get { throw new Exception("The method or operation is not implemented.");

}

public override string PasswordStrengthRegularExpression

{

get { throw new Exception("The method or operation is not implemented.");

}

public override bool RequiresQuestionAndAnswer

{

get { throw new Exception("The method or operation is not implemented."); }

}

public override bool RequiresUniqueEmail

{

get { throw new Exception("The method or operation is not implemented."); }

}

t-6t2Qa {h[L5 {2 Foilehieddm 5335t 2 LIYSy

v



public override string ResetPassword(string username, string answer)

{

throw new Exception("The method or operation is not implemented.");

}

public override bool UnlockUser(string userName)

{

throw new Exception("The method or operation is not implemented.");

}

public override void UpdateUser(MembershipUser user)

{

throw new Exception("The method or operation is not implemented.");

}

public override bool ValidateUser(string username, string password)

{

throw new Exception("The method or operation is not implemented.");

}
}

Holy guacamole! That's a lot of stuff. Sorry for the code puke there, but wanted you to feel a
little pain as | did trying to actually implement this thing. Hopefully you didn't get tired of
scrolling through that and you're still with me. ;)

It turns out that you don't have to implement the parts you don't need, but this clearly violates
the Interface Segregation Principle. This interface is extremely fat and not cohesive. A better
approach would have been to break it up into smaller interfaces that allow the implementers to
only worry about the parts that they need. I'm not going to go into the details of splitting this
up, but I think you get the idea.

Since | cannot think of another real world example, let's look at a completely bogus example.
Say you have the following code:

public abstract class Animal

{
public abstract void Feed();

}

public class Dog : Animal

{

public override void Feed()

{
// do something

}
}

public class Rattlesnake : Animal

{

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



public override void Feed()

{
// do something

}
}

But then you realize that you have a need for some of the animals to be treated as pets and
have them groomed. You may be tempted to do

public abstract class Animal

{
public abstract void Feed();

public abstract void Groom();

}

which would be fine for the Dog, but it may not be fine for the Rattlesnake (although I'm sure
there is some freako out there that grooms their pet rattlesnake)

public class Rattlesnake : Animal

{

public override void Feed()

{
// do something

}

public override void Groom()

{

// ignore - I'm not grooming a freaking rattlesnake
}
}

Here we have violated the ISP by polluting our Animal interface. This requires us to implement
a method that doesn't make sense for the Rattlesnake object. A better choice would be to
implement an IPet interface, which only Dog could implement, without affecting Rattlesnake.
You might end up with something like this:

public interface IPet

{

void Groom();

}

public abstract class Animal

{
public abstract void Feed();

}

public class Dog : Animal, IPet

{

public override void Feed()

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



{
// do something

}

public void Groom()

{
// do something

}
}

public class Rattlesnake : Animal

{

public override void Feed()

{
// do something

}
}

| think the key is if you find yourself creating interfaces that don't get fully implemented in its
clients, then that's a good sign that you're violating the ISP. You can check out the link to this
pdf for more complete information on the subject.

-tl-()tzQé {h[L5 {2toilehieNdm 5305t 2LI¥Syd p


http://www.objectmentor.com/resources/articles/isp.pdf

DIP: Dependenginversion Principle

A. HIGH LEVEL MODULES SHOULD NOT DEPEND UPON LOW LEVEL MODULES.
BOTH SHOULD DEPEND UPON ABSTRACTIONS

B. ABSTRACTIONS SHOULD NOT DEPEND UPON DETAILS. DETAILS SHOULD

DEPEND UPON ABSTRACTIONS
http://www.objectmentor.com/resources/articles/dip.pdf

DEPENDENCY INVERSION PRINCIPLE

Would You Solder A Lamp Directly To The Electrical Wiring In A Wall?

-tl-étzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://www.objectmentor.com/resources/articles/dip.pdf

Dependency Inversion Principley Jimmy Bogard

The Dependency Inversion Principle, the last of the Uncle Bob "SOLID" object-oriented design
principles, can be thought of the natural progression of the Liskov Substitution Principle, the
Open Closed Principle and even the Single Responsibility Principle. This post is the latest in the
set of SOLID posts:

PTOM: The Single Responsibility Principle
PTOM: The Open Closed Principle

PTOM: The Liskov Substitution Principle
PTOM: The Interface Segregation Principle

=A =4 -4 =4

The Dependency Inversion Principle, or DIP, is often used interchangeably with Dependency
Injection and Inversion of Control. However, following DIP does not mean we must
automatically use an loC container like Spring.NET, Windsor or StructureMap. 10C containers
are tools to assist in applications adhering to DIP, but we can follow DIP without using loC
containers.

The Dependency Inversion Principle states:

o High level modules should not depend upon low level moduld®oth should depend
upon abstractions.

o Abstractions should not depend upon detail®etails should depend upon
abstractions.

The DIP can be a little vague, as it talks about "abstractions" but doesn't describe what is being
abstracted. It speaks of "modules”, which don't have much meaning in .NET unless you
consider "modules” to be assemblies. If you're looking at Domain-Driven Design, modules
mean something else entirely.

The Dependency Inversion Principle along with the other SOLID principles, are meant to
alleviate the problems of bad designs. The typical software | run into in existing projects has
code organized into classes, but it still isn't easy to change. | usually see big balls of mud along
with a crazy spider web of dependencies where you can't sneeze without breaking code on the
other side of the planet.

Spider webs and bad design

Bad designs and poor code is not good because it's hard to change. Bad designs are:

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://www.lostechies.com/blogs/sean_chambers/archive/2008/03/15/ptom-single-responsibility-principle.aspx
http://www.lostechies.com/blogs/joe_ocampo/archive/2008/03/21/ptom-the-open-closed-principle.aspx
http://lostechies.com/blogs/chad_myers/archive/2008/03/11/ptom-the-liskov-substitution-principle.aspx
http://www.lostechies.com/blogs/rhouston/archive/2008/03/14/ptom-the-interface-segregation-principle.aspx
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html

f Rigid (change affects too many parts of the system)
{ Fragile (every change breaks something unexpected)
71 Immobile (impossible to reuse)

Some people’s ideas of "bad design” would be something like seeing string concatenation
instead of a StringBuilder. While this may not be the best performing choice, string
concatenation isn't necessarily a bad design.

It's pretty easy to spot bad designs. These are sections of code or entire applications that you
dread touching. A typical example of rigid, fragile and immobile (bad) code would be:

public class OrderProcessor

{

public decimal CalculateTotal(Order order)

{

decimal itemTotal = order.GetltemTotal();
decimal discountAmount = DiscountCalculator.CalculateDiscount(order);

decimal taxAmount = 0.0M;

if (order.Country =="US")
taxAmount = FindTaxAmount(order);
else if (order.Country == "UK")
taxAmount = FindvVatAmount(order);

decimal total = itemTotal - discountAmount + taxAmount;

return total;

}

private decimal FindVatAmount(Order order)

{

// find the UK value added tax somehow
return 10.0M;
}

private decimal FindTaxAmount(Order order)

{
// find the US tax somehow

return 10.0M;

}
}

The OrderProcessor sets out to do something very simple: calculate the total of an Order. To
do so, it needs to know the item total of the order, any discounts applied, as well as the tax
amount (which depends on the Order's Country).

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



Too many responsibilities

To see why the DIP goes hand-in-hand with the Single Responsibility Principle, let's list out the
responsibilities of the OrderProcessor:

Knowing how to calculate the item total

Finding the discount calculator and finding the discount

Knowing what country codes mean

Finding the correct taxing method for each country code

Knowing how to calculate tax for each country (commented out for brevity's sake)
Knowing how to combine all of the results into the correct final total

=A =4 =4 -4 -4 -4

If a single class (or a single method in this case) answers too many questions (how, where,
what, why etc.), it's a good indication that this class has too many responsibilities.

To move towards a good design, we need to remove the external dependencies of the class and
pare it down to its core responsibility, i.e. finding the order total. Offhand, the dependencies |
see are:

1 DiscountCalculator
1 Tax decisions

In the future, we might need to support more countries, which mean more tax services, and
more responsibilities. To reduce the rigidity, fragility and immobility of this design, we need to
move these dependencies outside of this class.

Towards a better design

When following the DIP, you notice that the Strategy pattern begins to show up in a lot of your
designs. Strategy tends to solve the "details should depend on abstractions” part of the DIP.
Factoring out the DiscountCalculator and the tax decisions, we wind up with two new
interfaces:

7 IDiscountCalculator
1 ITaxStrategy

I'm not a huge fan of the "ITaxStrategy" name, but it will suffice until we find a better name
from our model.

Factoring out the dependencies

To factor out the dependencies, first I'll create a couple of interfaces that match the existing
method signatures:

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



public interface IDiscountCalculator

{

decimal CalculateDiscount(Order order);

}

public interface ITaxStrategy

{

decimal FindTaxAmount(Order order);

}

Now that | have a couple of interfaces defined, | can modify the OrderProcessor to use these
interfaces instead:

public class OrderProcessor

{

private readonly IDiscountCalculator _discountCalculator;
private readonly ITaxStrategy _taxStrategy;

public OrderProcessor(IDiscountCalculator discountCalculator,
[TaxStrategy taxStrategy)

{
_taxStrategy = taxStrategy;

_discountCalculator = discountCalculator;

}

public decimal CalculateTotal(Order order)

{

decimal itemTotal = order.GetltemTotal();
decimal discountAmount = _discountCalculator.CalculateDiscount(order);

decimal taxAmount = _taxStrategy.FindTaxAmount(order);
decimal total = itemTotal - discountAmount + taxAmount;

return total;

}
}

The CalculateTotal method looks much cleaner now, delegating the details of discounts and tax
to the appropriate abstractions. Instead of the OrderProcessor depending directly on details, it
depends solely on the abstracted interfaces we created earlier. The specifics of how to find the
correct tax method is now encapsulated from the OrderProcessor, as is the hard dependency
on a static method in the DiscountCalculator.

Filling out the implementations

Now that we have the interfaces defined, we need actual implementations for these
dependencies. Looking at the DiscountCalculator, which is a static class, | find that | can't

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



immediately change it to a non-static class. There are many other places with references to this
DiscountCalculator, and since it's the real world, none of these other places have tests.

Instead, | can just use the Adapter pattern to adapt the interface | need for an
IDiscountCalculator:

public class DiscountCalculatorAdapter : IDiscountCalculator

{

public decimal CalculateDiscount(Order order)

{

return DiscountCalculator.CalculateDiscount(order);

}
}

In applying the Adapter pattern, | just wrap the real DiscountCalculator in a different class. In
this case, the advantage of the Adapter pattern is the existing DiscountCalculator can continue
to exist, when the mechanism for calculating discounts changes, my OrderProcessor does not
need to change.

For the tax strategies, | can create two implementations for each kind of tax calculation being
used today:

public class USTaxStrategy : ITaxStrategy
{

public decimal FindTaxAmount(Order order)

{
}
}

public class UKTaxStrategy : ITaxStrategy
{

public decimal FindTaxAmount(Order order)

{
}
}

| left the implementations out, but | basically moved the methods from the OrderProcessor into
these new classes. Neither of the original methods used any instance fields, so | could copy
them straight over.

My OrderProcessor now has dependencies factored out, so its single responsibility is easily
discerned from looking at the code. Additionally, the implementations of IDiscountCalculator
and ITaxStrategy can change without affecting the OrderProcessor.

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



Isolating the ugly stuff

For me, the DIP is all about isolating the ugly stuff. For calculating order totals, | shouldn't be
concerned about where the discounts are or how to decide what tax strategy should be used.
We did increase the number of classes significantly, but this is what happens when we move
away from a procedural mindset to a true object-oriented design.

I still have the complexity to solve of pushing the dependencies into the OrderProcessor.
Clients of the OrderProcessor now have the burden of creating the correct dependencies and
giving them to OrderProcessor. That problem is already solved with Inversion of Control (IoC)
containers like Spring.NET, Windsor, StructureMap, Unity and others.

These loC containers let me configure the "what" when injecting dependencies, so even that
decision is removed from the client. If I didn't want to go with an loC container, even a simple
creation method or factory class could abstract the construction of the OrderProcessor with the
correct dependencies.

By adhering to the Dependency Inversion Principle, | can create designs that are clean, with
clearly defined responsibilities. With the dependencies extracted out, the implementation
details of each dependency can change without affecting the original class.

That's my ultimate goal: code that is easy to change. Easier to change means a lower total cost
of ownership and higher maintainability. Since we know that requirements will eventually
change, it's in our best interest to promote a design that facilitates change through the
Dependency Inversion Principle.

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



The Dependency Inversion Princidby Gabriel Schenker

In this post | want to discuss the D of the S.O.L.I.Dprinciples and patterns. The principles and
patterns subsumed in S.0.L.I.D. can be seen as the cornerstones of "good" application design. In
this context, D is the place holder for the deperdency inversioprinciple. In a previous post, |
discussed the S which is the placeholder for the single responsibilitgrinciple.

What is Bad Design?

Let's first discuss the meaning of bad design. Is bad design when somebody claims:
That's not the way | would have done it...

Well, sorry, but this is not a valid measure for the quality of the design! This statement is purely
based on personal preferences. So let's find other, better criteria to define bad design. If a
system exhibits any or all of the following three traits, then we have identified bad design

1 the system is rigid: it's hard to change a part of the system without affecting too many other
parts of the system

71 the system is fragile: when making a change, unexpected parts of the system break

f the system or component is immobile: it is hard to reuse it in another application because it
cannot be disentangled from the current application

An immobile design

Let's have a look at the latter of the traits of bad design mentioned above. A design is immobile
when the desirable parts of the design are highly dependent upon other details that are not
desired.

Imagine a sample where we have developed a class which contains a highly sophisticated
encryption algorithm. This class takes a source file name and a target file name as inputs. The
content to encrypt is then read from the source file and the encrypted content is written to the
target file.

public class EncryptionService
{
public void Encrypt(string sourceFileName, string targetFileName)
{
// Read content
byte[] content;
using(var fs = new FileStream(sourceFileName, FileMode.Open, FileAccess.Read))
{
content = new byte[fs.Length];
fs.Read(content, 0, content.Length);

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://gabrielschenker.lostechies.com/blogs/gabrielschenker/archive/2009/01/21/real-swiss-don-t-need-srp-do-they.aspx

}

/1 encrypt
byte[] encryptedContent = DoEncryption(content);

// write encrypted content
using(var fs = new FileStream(targetFileName, FileMode.CreateNew, FileAccess.ReadWrite))

{
fs.Write(encryptedContent, 0, encryptedContent.Length);

}
}

private byte[] DoEncryption(byte[] content)

{
byte[] encryptedContent = null;

// put here your encryption algorithm...
return encryptedContent;

}
}

Listing 1. Encryption Service depending on Details

The problem with the above class is that it is highly coupled to a certain input and output. In
this case input and output are both files. You might have invested quite some time and
resources to develop the encryption algorithm which is the core responsibility of this service.
It's a shame that this encryption algorithm cannot be used in another context. The content to
be encrypted might not be present in a file but rather in a database and the encrypted content
might not be written to a file but sent to a web service.

Certainly we could make the above service more flexible and change its implementation. We
can put in place a switch for the content source type and one for the destination type of the
encrypted content.

public enum ContentSource { File, Database }
public enum ContentTarget { File, WebService }

public class EncryptionService_2
{
public void Encrypt(ContentSource source, ContentTarget target)
{
// Read content
byte[] content;
switch (source)
{
case ContentSource.File: content = GetFromFile(); break;
case ContentSource.Database: content = GetFromDatabase(); break;

}

// encrypt

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



byte[] encryptedContent = DoEncryption(content);

// write encrypted content
switch (target)

{
case ContentTarget.File:  WriteToFile(encryptedContent); break;

case ContentTarget.WebService: WriteToWebService(encryptedContent); break;

}
}

// rest of code omitted for brevity

}

Listing 2: Slightly improved Encryption Service

However this adds new interdependencies to the system. As time goes on, and more and more

a2dz2NOS | yYRk2NJ RSalAyl A2y GeLiSa Ydzad LI NIGAOAL
method will be littered with switch/case statements and will be dependent upon many lower

level modules. It will eventually become rigid and fragile.

Here comes the dependency inversion princigiethe rescue.
The Dependency Inversion Principle
Theory: the dependency inversigorinciple states:

a) High level modules should not depend upon low level modules. Botd depend upon
abstractions

b) Abstractions should not depend upon details. Details should depend upon abstractions

One way to characterize the problem above is to notice that the method containing the high
level policy, i.e. the Encryptmethod, is dependent upon the low level detailed method that it
controls, i.e. GetFromFiland WriteToWebServicéf we could find a way to make the Encrypt
method independent of the details that it controls, then we could reuse it freely. We could
produce other applications which used this service to encrypt content originating from any
content source to any destination.

Consider the simple class diagram below.

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



EncryptionService = |

Class
~
& | = Methods \\
y Vv Encrypt “
B f \A
IReader A IWriter 2
terface ‘ Interface
\
[
= Methods ' | = Methods
¥ ResdAll \ © Write
./ IReader .~/ [Reader ) IWriter ~/ [Writer
| FileReader ¥ DatabaseReader ¥ | FileWriter ¥ WebServiceWriter ¥
Class Class Class Class

Here we have an EncryptionServicgass which uses an abstract "Reader™” class, identified by an
interface IReadeliand an abstract "Writer" class, identified by an interface IWriter. Note that
the abstraction in this case is not achieved through inheritance but through the use of
interfaces. We have separated the interface from the implementation.

The Encrypt method uses the "Reader" to get the content and sends the encrypted content to
the "Writer".

public class EncryptionService

{
public void Encrypt(IReader reader, IWriter writer)

{

// Read content
byte[] content = reader.ReadAll();

// encrypt
byte[] encryptedContent = DoEncryption(content);

// write encrypted content
writer.Write(encryptedContent);

}

// rest of code omitted for brevity...

}

Listing 3: Encryption Service only depso Abstractions

-tl-()tzQé {h[L5 {2toilehieNdm 5305t 2LI¥Syd p



The Encryptmethod of the encryption service is now independent of a specific content reader
or writer. The dependencies have been inverted; the EncryptionServicdass depends upon
abstractions, and the detailed readers and writers depend upon the same abstractions.

The definition of the two interfaces used is:

public interface IReader

{
byte[] ReadAll();

}

public interface IWriter

{
void Write(byte[] content);

}

Listing 4. Reader and War Interfaces

Now we can reuse the encryption service. We can invent new kinds of "Reader" and "Writer"
implementations that we can supply to the Encryptmethod of the service. Moreover, no matter
how many kinds of "Readers" and "Writers" are created, the encryption service will depend
upon none of them. There will be no interdependencies to make the application fragile or rigid.
And the encryption service can be used in many different contexts. The service is mobile.

Why call it dependency inversion?

The dependency structure of a well designed object oriented application is "inverted" with
respect to the dependency structure that normally results from a "traditional” application
which is implemented in a more procedural style. In a procedural application high level
modules depend upon low level modules and abstractions depend upon details (as in listing 1
and 2).

Consider the implications of high level modules that depend upon low level modules. It is the
high level modules that contain the important policy decisions and business models of an
application. It is these models that contain the identity of the application. Yet, when these
modules depend upon the lower level modules, changes to the lower level modules can have
direct effects upon them; and can force them to change.

This predicament is absurd! It is the high level modules that ought to be forcing the low level
modules to change. The high level modules should take precedence over the lower level
modules. High level modules simply should not depend upon low level modules in any way.

Moreover, it is high level modules that we want to be able to reuse. When high level modules
depend upon low level modules, it becomes very difficult to reuse those high level modules in

-tl-()tZQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



different contexts. However, when the high level modules are independent of the low level
modules, then the high level modules can be reused quite simply.

Summary

When implementing an application the modules and components of a higher abstraction level
should never directly depend upon the (implementation) details of modules or components of
a lower abstraction level. It's the high level components that make an application unique. It's
the high level modules that contain most of the business value. Thus, the high level
components should dictate whether low level components have to change or not and not vice
versa.

When a component does not depend on lower level components directly but only through
abstractions this component is mobile- that is, the component is reusable in many different
contexts.

Furthermore, when the design is respecting the dependency inversion princige application is
less brittle or fragile. If some changes have to be made to a low level module there are no side
effects that manifest themselves in other (possibly unexpected) parts of the system.

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



Topics Related to S.O.L.I.D.

The core understanding of the SOLID principles quickly lead us into many other discussions on how we
can and should apply these principles in the real world. There is also a wealth of knowledge in other
patterns and principles, which SOLID code enhances. The end goal of SOLID, after all, is not to be a strict,
rigid set of rules that must be applied at all cost. Rather, it is intended to be a foundational set of
principles upon which other principles and practices can be built. With this in mind, we have identified a
few items that directly relate to our SOLID implementations.

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



SingleResponsibility Versus Needless Complexity by Ray
Houston

At Pablo's Day of TDD, we were discussing the Single-Responsibility Principle (SRP) while
working through one of the labs and a question came up about a piece of code. The code in
question looked something like the following (warning: this is over simplified code to show a
point):

public bool Login(string username, string password)

{

var user = userRepo.GetUserByUsername(username);

if(user == null)
return false;

if (loginValidator.IsValid(user, password))
return true;

user.FailedLoginAttempts++;

if (user.FailedLoginAttempts >= 3)
user.LockedOut = true;

return false;

}

This was from the LoginService class and this was its only method. The question was whether or
not this violates SRP. It appears to have multiple responsibilities, it is in charge of incrementing
FailLoginAttempts as well as locking the user out after 3 failed attempts. | believe we answered
the question with a "depends", but it bothered me that we didn't have a better answer.
Personally, | wouldn't have busted this up into another class, but | didn't have a good argument
to stand on.

Today | went searching through Agile Principle, Patterns, and Practices in C# looking for a better
answer. In the chapter on SRP, the book gives an example of an interface of a modem that can
Dial/Hang-up and Send/Receive. The former is connection management and the later is data
communication. The book asks the question as to whether or not these responsibilities should
be separated. The answer is

"That depends on how the application is changing."

It then gives an example to how a change might violate SRP, but then states:

-tl-()tZQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://www.lostechies.com/blogs/chad_myers/archive/2008/09/15/announcing-pablo-s-days-of-tdd-in-austin-tx.aspx
http://www.lostechies.com/blogs/sean_chambers/archive/2008/03/15/ptom-single-responsibility-principle.aspx
http://www.amazon.com/Principles-Patterns-Practices-Robert-Martin/dp/0131857258

"If, on the other handthe application is not changing in ways that cause the two responsibilities
to change adifferent times, there is no need to separate them. Indeed, separating them would
smell of needless complexity."

Ah, there's the backup wisdom that | needed to validate my gut feeling. Here's one final quote
from the book:

"There is a corollary here. Amis of change is an axis of change only if the changes occur. It is
not wise to apply SRP (or any other principle, for that matter) if there is no symptom."

| think applying SRP is about using good judgment. You certainly don't want to wait until you
have to make a change before you think about SRP. You also don't want to over do it either and
end up with classes with one method, each having only a couple lines of code.

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



DIP: Creating and Working With A CloatlObjects by Derick
Bailey

A few months ago, | posted some thoughts and guestions on the proper use of Inversion of
Control (loC) containers and the Dependency Inversion (DI) principle. Since then, I've had the
opportunity to do some additional study and teaching of DI. I've had that light bulb moment for
the proper use of an loC container. | haven't talked about it or tried to present the info to my
team(s) yet because | had not verified my thoughts were on the right track, until recently. | got
to spend a few hours at the Dovetail office with Chad, Jeremy, Josh, etc, and had the pleasure
of being able to pick their brains on some of the questions and thoughts that I've had
concerning DI and IoC. In the end, Chad confirmed some of my current thoughts and helped me
put them into a metaphor that | find to be very useful in understanding what Dependency
Inversion really is. It is a cloud objects that can be strung together into a necessary hierarchy, at
runtime.

Consider a set of classes that need to be instantiated into the correct hierarchy so that we can
get the functionality needed. It's really easy to have the highest level class, the one that we
really want to call method on, instantiate the class for next level down. Then have that class
instantiate it's next level down, and so-on. For example:

AnotherClass

This creates the necessary hierarchy, but breaks the core object oriented principle of loose
coupling. We would not be able to use ThisClass without bringing ThatClass along, and we
would not be able to use ThatClass without bringing AnotherClass along.

By introducing a better abstraction for each class and putting Dependency Inversion into play,
we can break the spaghetti mess apart. We then introduce the ability to use any of these
individual classes without requiring the specific implementation of the dependent class.

For starters, let's introduce an interface for ThisClass to depend on and an interface for
ThatClass to depend on.

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://www.derickbailey.com/2008/08/29/WhatIsTheCorrectUseOfADependencyInjectionFrameworkOrIoCContainer.aspx
http://www.derickbailey.com/2008/08/29/WhatIsTheCorrectUseOfADependencyInjectionFrameworkOrIoCContainer.aspx
http://www.derickbailey.com/2008/08/29/WhatIsTheCorrectUseOfADependencyInjectionFrameworkOrIoCContainer.aspx
http://www.dovetailsoftware.com/
http://www.lostechies.com/blogs/chad_myers/
http://codebetter.com/blogs/jeremy.miller/
http://www.lostechies.com/blogs/joshuaflanagan/

IDoSomething

ThisClazs

IWhatever

ThatClass

AnaotherClass

Now that that both of these classes can depend on an interface, instead of the explicit
implementation of the child object, we need to have the expected child implement the
interface in question. For example, we expect ThatClass to be used by ThisClass, so we will want
ThatClass to implement the IDoSomething interface. By the same notion, we want AnotherClass
to implement the IWhatever interface. This will allow us to provide AnotherClass as the
dependency implementation for ThatClass. Our object model now looks like this:

IDaSomething

ThisClass

IWhatever

ThatClass

1DoSomething

AnotherClass

What we have now is not just a set of classes that all depend on each other, but a "cloud" of
objects with dependencies and interface implementations that will let us build the hierarchy we

need, when we need it.

Y Y
D
Fi

IaSamething

IWhatever ThisClass

Thatless

AnatherClas

L wh " |

-tl-()tzQé {h[L5 {2toilehieNdm 5305t 2LI¥Syd p



The real beauty of this is we no longer care about the implementation specifics of
IDoSomething from ThisClass. ThisClass can focus entirely on doing its duty and calling into
IDoSomething when needed. By passing in the dependency as an abstraction, we're able to
replace the dependency implementation at any time; runtime, unit test time, etc. This also
makes our system much easier to learn, understand and most importantly, easier to change.

Now that we have our cloud of implementations and abstractions in place, we can reconstruct
the hierarchy in order to call into ThisClass and have it perform its operations. Here's where
Dependency Inversion meets up with Inversion of Control.

To create ThisClass, we need an implementation of IDoSomething

ThatClass implements IDoSomething, so we'll instantiate it before ThisClass
ThatClass needs an instance of IWhatever

AnotherClass implements IWhatever, so we'll instantiate it before ThatClass

Once we have AnotherClass instantiated, we can pass it into ThatClass's constructor
Once we have ThatClass instantiated, we can pass it into ThisClass's constructor

=A =4 =4 -4 4 4

We end up with a hierarchy of objects that is instantiated in reverse order, like this:

IDoSomething
ThisClass

We have now successfully inverted our system's construction; each implementation detail is
created and passed into the object that depends on it, re-creating our hierarchy from the
bottom up. In the end, we have an instance of ThisClass that we can call into with the same
basic hierarchy of classes that we started with. The real difference is we can change this
hierarchy at any time without worrying about breaking the functionality of the system.

Once we have our Dependency Inversion and Inversion of Control in place, we can start utilizing
the existing loC frameworks to automatically create our hierarchy of objects based on the
advertised dependencies (an advertised dependency is a dependency that is specified as a
constructor parameter of a class). Tools like StructureMap, Spring.net, Windsor, Ninject and
others, all provide auto-magic ways of creating each dependency of the object that is requested
all the way up/down the hierarchy. Utilizing one of these 10C containers can greatly simplify our

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://structuremap.sourceforge.net/Default.htm
http://www.springframework.net/
http://www.castleproject.org/container/index.html
http://ninject.org/

code base and eliminate the many object instantiations that would start to litter our code. As |
said in my previous post, | know all about what not to do with loC containers. Good loC usage,
though, is another subject for another post.

-tl-()tzQé {h[L5 {2toilehieNdm 5305t 2LI¥Syd p


http://www.lostechies.com/blogs/jimmy_bogard/archive/2008/09/12/some-ioc-container-guidelines.aspx

Concusions and Benefits of S.O.L.1.D.

Low Coupling

By abstracting many of our implementation needs into various interfaces and introducing the concepts

2y h/t YR 5Lt 6SQ@S ONBIGSR I aeé adiviudpigieKdani Kl a @
be taken out of the system with little to no spaghetti mess trailing after it. Separating the various

O2yOSNya AyiG2z GKS @I NA2dza 20602S00 AYLIX SYSyidalrdAiazya
behavior as needed, with little modification to the overall system, just update the one piece that

contains the behavior in question.

High Cohesion

This really is a direct result of low coupling and SRP; we have a lot of small pieces that can be stacked

together like building blocks to create something larger and more complex. Any of these individual

LIASOSa Yire y2G NBLINBaSyid YdzOK FdzyOuAaz2ylftAde 2N oS
use without a bunch of other pieces. DIP has also allowed us to tie the various blocks together by

depending on an abstraction and allowing that abstraction to be fulfilled with different

implementations. This creates a system that is much greater than the mere sum of its parts.

Encapsulation

True encapsulation is not just making fields private and hiding data from external objects, A (hididg

implementation details from other objects, depending only on the abstractions and expected behaviors

of those abstractions. LSP, DI, and SRP all work hand in hand to create true encapsulation in the new

LIN2E 2SO0 aiNHzOGdz2NBE® 2SQ@S SyOl LjJadzZ F SR 2dzNJ 6 SKI @A 2

preventing them from leaking into each other while ensuring that the dependency on those behaviors is

Sy Ol LladzZ F i SR 6SKAYR I Jthé inglehenfatyon dsthiFand@ibwied or&@ S KA RR

AYLIE SYSy(lFidAz2y G2 06S Ldzi Ay LXIFOS F2NJ GKIFG AydSNF

done the necessarydue-RA £ A3Sy O0S (2 SyadaNS GKIFIG 6S INB y20 GOA2
semantics or purpose (LSP), ensuring that we can properly replace the implementation as needed.

-tl-()tZQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o



Copyright and Contact Information

All content produced in this E-Book was written by members of the LosTechies.com community and is
copyrighted by the individual authors.

Copyright ©2009 Joe Ocampo, Jason Meridth, et al. All Rights Reserved.

Pablo's SOLID Software Development, by Joe Ocampo, Jason Meridth, Chad Myers, Sean Chambers, Ray
Houston, Jimmy Bogard, Gabriel Schenker, and Derick Bailey, is licensed under a Creative Commons
Attribution-Share Alike 3.0 United States License.

For more information on SOLID software development and other best practices of software
development, be sure to check out the LosTechies website: http://www.lostechies.com

You can also contact us directly through the website and through the individual blogs and profiles on the
site. If you haven't already, please consider subscribing to the Los Techies Main Feed so that you can see
the various post from the other Los Techies bloggers.

The main feed is here: http://feeds.feedburner.com/lostechies

-tl-()tzQé {h[ L5 {2 EoilehieNdm 5S@St 2 LIYSy i o


http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.lostechies.com/
http://feeds.feedburner.com/lostechies

	Pablo's SOLID Software Development
	What is S.O.L.I.D.?
	SRP: Single Responsibility Principle
	OCP: Open Closed Principle
	LSP: Liskov Substitution Principle
	ISP: Interface Segregation Principle
	DIP: Dependency Inversion Principle


	SRP: Single Responsibility Principle
	Single Responsibility Principle by Sean Chambers
	Single Responsibility Principle by Jason Meridth
	Anti-SRP (Active Record)
	Translation to SRP

	Real Swiss don't need SRP, do they? by Gabriel Schenker
	Introduction
	Swiss people think differently...
	Why does the rest of the world consider SRP to be important?
	Refactoring step by step
	Step 1: Defining a model
	Step 2: Extracting the loading (and parsing) into a repository
	First Refactoring
	Step 3: Introducing a presenter and extracting logic not related to presentation from the view
	Second refactoring
	Starting the application
	Step 4: Implementing the repository
	Refactoring again
	Class diagram of the fully refactored sample

	The sample code
	Summary


	OCP: Open Closed Principle
	Open Closed Principle by Joe Ocampo
	A case study in OCP ignorance
	Where'd we go wrong?
	Solutions

	OCP revisited in Ruby by Joe Ocampo
	But wait there is more!

	The open closed principle by Gabriel Schenker
	Introduction
	Sealed classes
	What about inheritance?

	Samples
	OCP by Composition
	OCP by Inheritance

	Conclusion


	LSP: Liskov Substitution Principle
	Liskov Substitution Principle by Chad Myers
	A case study in LSP ignorance
	Where'd we go wrong?
	Solutions


	ISP: Interface Segregation Principle
	Interface Segregation Principle by Ray Houston

	DIP: Dependency Inversion Principle
	Dependency Inversion Principle by Jimmy Bogard
	Spider webs and bad design
	Too many responsibilities
	Towards a better design
	Factoring out the dependencies
	Filling out the implementations
	Isolating the ugly stuff

	The Dependency Inversion Principle by Gabriel Schenker
	What is Bad Design?
	An immobile design
	The Dependency Inversion Principle
	Why call it dependency inversion?
	Summary


	Topics Related to S.O.L.I.D.
	Single-Responsibility Versus Needless Complexity by Ray Houston
	DIP: Creating and Working With A Cloud of Objects by Derick Bailey

	Conclusions and Benefits of S.O.L.I.D.
	Low Coupling
	High Cohesion
	Encapsulation

	Copyright and Contact Information

